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Determination of the symmetry profile of structures is a persistent challenge in

materials science. Results often vary amongst standard packages, hindering

autonomous materials development by requiring continuous user attention and

educated guesses. This article presents a robust procedure for evaluating the

complete suite of symmetry properties, featuring various representations for the

point, factor and space groups, site symmetries and Wyckoff positions. The

protocol determines a system-specific mapping tolerance that yields symmetry

operations entirely commensurate with fundamental crystallographic principles.

The self-consistent tolerance characterizes the effective spatial resolution of the

reported atomic positions. The approach is compared with the most used

programs and is successfully validated against the space-group information

provided for over 54 000 entries in the Inorganic Crystal Structure Database

(ICSD). Subsequently, a complete symmetry analysis is applied to all 1.7+

million entries of the AFLOW data repository. The AFLOW-SYM package has

been implemented in, and made available for, public use through the automated

ab initio framework AFLOW.

1. Introduction

Symmetry fundamentally characterizes all crystals, estab-

lishing a tractable connection between observed phenomena

and the underlying physical/chemical interactions. Beyond

crystal periodicity, symmetry within the unit cell guides

materials classification (Mehl et al., 2017), optimizes materials-

properties calculations and instructs structure-enumeration

methods (Buerger, 1947; Hart & Forcade, 2008). Careful

exploitation of crystal symmetry has made possible the char-

acterization of electronic (Setyawan & Curtarolo, 2010),

mechanical (Toher et al., 2014, 2017) and thermal properties

(Nath et al., 2016, 2017; Plata et al., 2017) in high-throughput

fashion (Curtarolo et al., 2013), giving rise to large materials-

properties databases such as AFLOW (Curtarolo et al., 2012;

Yang et al., 2016; Carrete et al., 2014; Levy et al., 2011;

Setyawan & Curtarolo, 2010; Levy, Hart & Curtarolo, 2010a;

Levy, Chepulskii et al., 2010; Levy Hart & Curtarolo, 2010b;

Hart et al., 2013; Mehl et al., 2017; Supka et al., 2017), NoMaD

(Scheffler & Draxl, 2014), Materials Project (Jain et al., 2011)

and OQMD (Saal et al., 2013). As these databases incorporate

more properties and grow increasingly integrated, access to

rapid and consistent symmetry characterizations becomes of

paramount importance.
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Central to each symmetry analysis is the identification of

spatial and angular tolerances, quantifying the threshold at

which two points or angles are considered equivalent. These

tolerances must account for numerical instabilities and, more

importantly, for atypical data stemming from finite tempera-

ture measurements or deviations in experimentally measured

values (Le Page, 1987). Existing symmetry platforms, such as

FINDSYM (Stokes & Hatch, 2005; Stokes, 1995), PLATON

(Spek, 2003) and Spglib (Togo, 2017a), all cater to different

symmetry objectives, and thus address tolerance issues in

unique ways. The authors of FINDSYM, which is designed for

ease of use, acknowledge that its algorithms cannot handle

noisy data, and it applies no treatments for ill-conditioned

data (Stokes & Hatch, 2005). The PLATON geometry

package, containing the subroutine ADDSYM, allows a small

percentage of candidate atomic mappings to fail and attempts

to capture missing higher-symmetry descriptions (Spek, 2003).

Lower-symmetry descriptions in atomic coordinates can

originate from (i) extraction issues with X-ray diffraction data

(e.g. incorrectly identified crystal system, altered Laue class

within a crystal system and neglected inversion) and (ii) ab

initio relaxations (e.g. lost internal translations) (Baur &

Tillmanns, 1986; Herbstein & Marsh, 1982; Marsh & Herb-

stein, 1983). The Spglib package applies independent toler-

ance scans within subroutines, e.g. in its methods for finding

the primitive cell (get primitive) and Wyckoff positions

(ssm get exact positions), if certain crystallographic

conventions are violated, potentially yielding globally incon-

sistent symmetry descriptions (Togo, 2017a). These packages

present suggested default tolerance values that are largely

arbitrary and often justified a posteriori on a limited test set. In

the general case, or in the event where these global defaults

fail, the packages fall back on user-defined tolerances.

Unfortunately, it is difficult to compare results across packages

outside of these default values because tolerances are defined

differently. FINDSYM and Spglib both offer a tunable atomic

mapping tolerance, along with a lattice tolerance (FINDSYM)

and an angular tolerance (Spglib), whereas PLATON has four

separate input tolerances, each specific to a particular opera-

tion type. Ultimately, these inconsistencies are symptomatic of

an underlying inability to appropriately address tolerances in

symmetry analyses.

Managing input/output formats for these packages also

presents a challenge. FINDSYM and PLATON both read CIF

and SPF files, which are particularly useful for structures

deriving from larger crystal-structure databases, such as the

Inorganic Crystal Structure Database (ICSD) (Bergerhoff et

al., 1983; Belsky et al., 2002) and Cambridge Structural

Database (CSD) (Groom et al., 2016). PLATON also supports

a few other useful input formats, while Spglib has its own input

format. Package-specific formats are useful for the developers,

but create an unnecessary hurdle for the user, who may need

to implement structure-file converters. This is particularly

problematic when package developers change the formats of

these inputs with new version updates, forcing the user to

continuously adapt workflows/frameworks. Additionally, all

output formats are package specific, with a medley of

symmetry descriptions and representations provided among

the three. The assortment of outputs presents yet another

hurdle for users trying to build custom solutions for frame-

work integration. Furthermore, it forces users to become

locked-in to these packages.

These issues require extensive maintenance on the side of

the user, with little guarantee of the validity of the resulting

symmetry descriptions. In the case of large materials-proper-

ties databases, providing such individual attention to each

compound’s symmetry description becomes entirely imprac-

tical. Herein, we present a robust symmetry package imple-

mented in the automated ab initio computational framework

AFLOW, known as AFLOW-SYM. The module delivers a

complete symmetry analysis of the crystal, including the

symmetry operations for the lattice point group, reciprocal-

space lattice point group, factor group, crystal point group,

dual of the crystal point group, symmetry-equivalent atoms,

site symmetry and space group (see Appendix A for an

overview of symmetry groups). Moreover, it provides general

crystallographic descriptions including the space-group

number and label(s), Pearson symbol, Bravais lattice type and

variations, Wyckoff positions, and standard representations of

the crystal. The routine employs an adaptive structure-specific

tolerance scheme capable of handling even the most skewed

unit cells. By default, two independent symmetry procedures

are applied, enabling corroboration of the characterization.

The scheme has been tested on 54 000 compounds from the

ICSD in the http://www.aflow.org/ repository, showing

substantial improvement in characterizing space groups and

lattice types compared with other packages. Along with a

standardized text output, AFLOW-SYM presents the results

in JavaScript Object Notation (JSON) for easy integration

into different workflows. The software is completely written in

C++ and it can be compiled in UNIX, Linux and MacOSX

environments using the gcc/g++ suite of compilers. The

package is open source and is available under the GNU-GPL

license. An AFLOW-SYM Python module is also available to

facilitate integration with other workflow packages, e.g.

AFLOW� (Supka et al., 2017; Agapito et al., 2015) and

NoMaD (Scheffler & Draxl, 2014). Thus, AFLOW-SYM

serves as a robust one-stop symmetry shop for the materials-

science community.

2. Methods

2.1. Periodic boundary conditions in skewed cells

Analyzing the symmetry of materials involves determining

the full set of their isometries. Algorithmically, candidate

symmetry operators are applied to a set of atoms and vali-

dated if (i) distances between atoms and their transformed

counterparts are within a mapping tolerance ", and (ii) the

mappings are isomorphic (one-to-one). For convenience, " is

defined in units of a Euclidean space – ångströms in this case.

An explicit mapping function is defined, indicating whether

atom mappings are successful:
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mapatomðdcÞ ¼
true if dc

�� ��<"
false otherwise

�
; ð1Þ

where dc is the Cartesian distance vector between an atom and

a transformed atom. Symmetries of the crystal are discovered

when successful isomorphic mappings – given by equation (1)

– exist between all of the original and transformed atoms.

Under periodic boundary conditions, the minimum distance

for the mapping function is identified by considering equiva-

lent atoms of nearby cells [so-called method of images

(Hloucha & Deiters, 1998)]:

dmin
c ¼ min

na;nb;nc

dc þ naaþ nbbþ nccð Þ; ð2Þ

where a, b, c are the lattice vectors; na, nb, nc are the indices of

neighboring cells; and dmin
c is the globally optimal Cartesian

distance vector. In the simplest case of a purely orthorhombic

cell, the approach requires exploration of the 26 surrounding

unit cells ð�1 � na; nb; nc � 1Þ. However, additional neigh-

boring cells should be considered with increased skewness of

the lattice vectors (see x2.7), making it prohibitively expensive.

Instead, many algorithms minimize the distance vector

through a greedy, bring-in-cell approach (Hloucha & Deiters,

1998). Working with fractional coordinates, each component i

of the distance vector df is minimized using the nearest-integer

function [nint (Hloucha & Deiters, 1998)]:

eddmin

f;i ¼ df;i � nint df;i

� �
8i;eddmin

c ¼ Leddmin

f ; ð3Þ

where L is the column-space matrix

representation of the lattice andeddmin

c iseddmin

f converted to Cartesian coordinates

for the mapping determination in

equation (1).

While it is a convenient shortcut, the

bring-in-cell minimum distance is not

generally equivalent to the globally

optimized distance:eddmin

c 6¼ dmin
c (see Fig.

1a). A component-by-component mini-

mization of the distance vector assumes

independent basis vectors (no skew-

ness) and neglects potentially closer

images that are only considered by

exploring all neighboring cells. Occur-

rence of a distance mismatch depends

on the lattice type and compromises the

integrity of the mapping determination.

The issue becomes particularly elusive

in fractional coordinates, where the size

and shape of the cell are warped to yield

a unit cube as shown in Fig. 1(b). The

greater the anisotropy of the lattice, the

larger the warping. Fig. 1(c) illustrates

how the tolerance changes between

Cartesian and fractional space. In the

general case, a spherical tolerance in

Cartesian coordinates warps into an

ellipsoid in fractional coordinates.

Hence, the criteria for successful

mappings in fractional space are direc-

tion dependent unless the distance is

sufficiently small, i.e. within the

circumscribed sphere of radius "0

(highlighted in orange). Distances

within "0 in fractional space always map

within " in Cartesian space, but a robust

check (global optimization) is needed

for larger distances to account for the

extremes of the ellipsoid. Since most

distances outside of "0 do not yield
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Figure 1
Visualizations of space warping with a basis transformation. (a) To validate a candidate mirror
operation (described by n̂nm) on a crystal (blue atoms), the operation is applied to yield a
transformed crystal (hollow orange atoms superimposed on the original crystal). The true minimum
distance between the blue and orange atoms is resolved in Cartesian space, indicated by the green
dmin

c vector. However, the bring-in-cell method determines another periodic image to be closer,
highlighted by the dashed red vector. The mismatch is obscured in fractional space, where the red
vector appears smaller than the green, indicated byeddmin

c . (b) An atom is placed in the middle of the
lattice with a surrounding sphere of radius ". Mapping occurs when the position of an atom
transformed by a symmetry operator is within the sphere. The size and shape of the sphere are
warped with a basis transformation (Cartesian to fractional): uniform compression occurs in cubic
cells, oblate compression in orthorhombic cells, non-uniform (sheared) compression in triclinic
lattices. (c) Two-dimensional illustration of how the tolerance (") warps in fractional space for cubic,
orthorhombic and triclinic lattices. The orange circle with radius "0 in fractional coordinates
indicates the bounds of the safe mapping region, independent of direction.



mappings, such a robust check is generally wasteful. Instead,

more useful insight can be garnered from Fig. 1(c): tolerances

sufficiently bounded by the skewness can still yield a proper

mapping determination using the inexpensive bring-in-cell

algorithm.

The goal is to define an upper tolerance threshold to safely

ensure that the bring-in-cell minimum (eddmin

c ) and global

minimum (dmin
c ) yield the same mapping results, in spite of a

distance mismatch:

mapatomðd
min
c Þ � mapatomð

eddmin

c Þ j "< dmin
c

�� ��;
8dc j d

min
c 6¼

eddmin

c : ð4Þ

A mismatch is encountered when the image identified by the

bring-in-cell method is not the optimal neighbor; therefore:

dmin
c �

eddmin

c . A suitable threshold needs to overcome the

difference between the two methods for all mismatch possi-

bilities, i.e. " would need to be below dmin
c or aboveeddmin

c to yield

a consistent mapping determination. A threshold greater thaneddmin

c is ruled out to ensure that " is always smaller than the

minimum interatomic distance [dnnðminÞ
c ], making it possible to

distinguish nearest neighbors. To find a tolerance in the

remaining region ð"< jjdmin
c jjÞ, the largest mismatch possible

should be addressed directly, which yields the smallest dmin
c

and thus the most restrictive bound on the tolerance. Given

the angles between the lattice vectors ð�; �; �Þ, a maximum

skewness is defined as

�max ¼ maxðcos�; cos �; cos �Þ; ð5Þ

where the cosine of the angle derives from the normalized, off-

diagonal terms of the metric tensor. �max lies in the range ½0; 1Þ,

where �max ¼ 0 characterizes a perfectly orthorhombic cell. A

suitable maximum mapping tolerance is heuristically defined

as

"max ¼ ð1� �maxÞd
nnðminÞ
c ; ð6Þ

which appropriately reduces dnnðminÞ
c (an absolute upper bound

for the tolerance to maintain resolution between atoms) with

increasing skewness. The form of the coefficient (1� cos �)

decays quickly with basis-vector overlap (of the order of �2),

ensuring a safe enveloping bound. Tolerances well below "max

should yield the correct mapping determination with the

bring-in-cell approach (in spite of a distance mismatch);

otherwise, the global minimization algorithm should be

employed:

dmap
c ¼

Leddmin

f if "� "max

min
na;nb;nc

ðdc þ naLa þ nbLb þ ncLcÞ otherwise
:

(
ð7Þ

To demonstrate the robustness of "max, extreme hypothetical

cases are presented in Appendix C.

2.2. Adaptive tolerance scheme

While "max offers a practical upper tolerance bound for the

choice of the distance minimization algorithm, it offers no

insight for choosing a specific tolerance. Of course, there are

fundamental constraints, such as the minimum interatomic

distance and the precision of the input structure parameters:

"precision <"< dnnðminÞ
c , but these can span over several orders of

magnitude, throughout which a variety of results are possible.

Fig. 2 illustrates the different space groups that may be

assigned to AgBr (ICSD No. 56551; http://aflow.org/materi-

al.php?id=Ag1Br1_ICSD_56551) with various tolerance

choices (the ICSD reports space group No. 11). Interestingly,

adjacent space-group regions show non-isomorphic subgroup

relations: between space-group Nos. 59 and 11 and between

225 and 166. Of particular concern is the gap highlighted in

Fig. 2(b) between space-group regions 166 and 59. Not

surprisingly, these space groups share no subgroup relations.

These gaps represent problematic regions where noise in the

structural information interferes with the determination of

satisfied symmetry operations, yielding profiles inconsistent

with any possible space group. Rather than an a posteriori

selection of the symmetry elements to include in the analysis,

we employ an adaptive tolerance approach. A radial tolerance

scan is performed surrounding the initial input tolerance "0 to

overcome the ‘confusion’ region, as shown in Fig. 2(b). With

each adjustment of the tolerance, the algorithm updates and

validates all symmetry properties and operations, yielding a

globally consistent profile and an effective spatial resolution

for the structure.

To fully characterize a structure’s symmetry, AFLOW-SYM

employs two major symmetry procedures. The first calculates

the symmetry of the crystal in the International Tables for

Crystallography (Hahn, 2002; Wondratschek & Müller, 2004;

Aroyo, Perez-Mato et al., 2006; Aroyo, Kirov et al., 2006)

(ITC) conventional cell, yielding the space group and Wyckoff

positions. The second resolves the symmetry profile of the

structure in the original (input) representation, including: the

lattice point group, reciprocal-lattice point group, factor

group, crystal point group, dual of the crystal point group,
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Figure 2
Variation of space group with mapping tolerance for AgBr (ICSD No.
56551) as determined by AFLOW-SYM. (a) Space groups and tolerance
ranges identified are as follows (ascending order): 1.0 � 10�6 to 4.0855 �
10�2 Å is monoclinic (space group No. 11), 4.08556 � 10�2 to 1.64186 �
10�1 Å is orthorhombic (space group No. 59), 2.46281 � 10�1 to 6.69605
� 10�1 Å is rhombohedral (space group No. 166) and 6.69606 � 10�1 to
1.0 Å is face-centered cubic (space group No. 225). (b) A gap is
highlighted between 1.64186 � 10�1 to 2.46281 � 10�1 Å where no
consistent space group is identified. The orange arrows illustrate how the
algorithm scans possible tolerances to find the closest consistent space
group.



space group, inequivalent and equivalent atoms, and the site

symmetry. While both routines can be employed indepen-

dently, the two are combined in AFLOW-SYM by default,

affording additional validation schemes to ensure a stricter

consistency.

Ultimately, the combination of the tolerance scan and

integrated workflow (with robust validation schemes) ensures

the automatic determination of a consistent symmetry profile.

While the option remains for a user-defined tolerance (with

and without the scan), AFLOW-SYM heuristically defines two

default tolerance values: tight ð"tight ¼ dnnðminÞ
c =100Þ and

loose ð"loose ¼ dnnðminÞ
c =10Þ. Generally, an expected symmetry

profile (perhaps from experiments) can be found in either of

the two tolerances. If no tolerance is defined, AFLOW-SYM

defaults to the tight tolerance. The tolerance chosen for the

analysis is compared against "max to identify the required

minimization technique to yield consistent mappings [see

equation (7)]. Overall, the AFLOW-SYM tolerance scheme

has been validated against 54 000 entries from the ICSD, and

subsequently applied to all 1.7 million entries stored in the

http://www.aflow.org/ repository. The symmetry results can be

retrieved from the AFLOW repository via the REST-API

(Taylor et al., 2014) or the AFLUX Search-API (Rose et al.,

2017).

2.3. Tolerance types and conversions

Outside of mapping distances, there

are a number of relevant quantities for

which an equivalence criterion is

required, e.g. lattice vectors, axes,

angles and symmetry operations.

Instead of defining separate tolerances

for each, AFLOW-SYM leverages the

single spatial tolerance, converting

quantities to Cartesian distances

whenever possible. For vector quan-

tities such as lattice vectors and axes,

the difference is taken, converted to the

Cartesian form (if necessary), and the

Euclidean norm of the resulting vector

is compared with the spatial tolerance.

For angles, each angle �i is converted to

a straight-line distance di:

di ¼ xi sin ð�iÞ; ð8Þ

where xi is the average length of the

angle-defining vectors in Cartesian

space. The two straight-line distances

are subtracted and compared with the

input spatial tolerance. To compare

rotation matrices for a particular lattice,

each matrix is transformed into its

fractional form, resulting in two integer

matrices that can be matched exactly.

2.4. International Tables for Crystallography standard
representation

One strategy for uncovering a structure’s symmetry profile

is to convert it to a standard form, such as the one defined by

ITC. In this representation, the symmetry operations, space

group and Wyckoff positions are well tabulated, mitigating the

computational expense involved in combinatorial operation

searches. To efficiently explore the possibilities, the algorithm

exploits the lattice symmetry to resolve the crystal symmetry,

from which the conventional cell is defined. The full workflow

is illustrated in Fig. 3.

First, the algorithm finds a primitive representation of the

crystal (of which there are many) by exploring possible

internal translations forming a smaller lattice (Hahn, 2002). To

optimize the search, only the vectors between the least-

frequently occurring atomic species are considered. The

translation vector should preserve cell periodicity, and the

resulting reduced representation should conserve the stoi-

chiometry.

Next, the symmetry of the lattice is determined by calcu-

lating the mirror and n-fold rotation operations. The primitive

cell is expanded from�1 to 1 in each direction (Le Page, 1987)

and combinations of lattice points are considered for defining

the following: (i) mirror operations characterized by a plane

188 David Hicks et al. � AFLOW-SYM Acta Cryst. (2018). A74, 184–203
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Figure 3
Workflow for the algorithm for converting a structure to the standard representation as defined by
International Tables for Crystallography. Functions are represented by blue rectangles and
validation schemes by orange diamonds.



(normal n̂nmirror) between two lattice points about which half

the lattice points can be reflected onto the other, and (ii) n-

fold rotations ðn 2 f2; 3; 4; 6gÞ described by an axis (r̂rn-fold) and

angle ð�Þ such that a rotation about r̂rn-fold by � yields an

isomorphic mapping of lattice points. The two types of

operations are illustrated in Fig. 4.

The cardinality of each operation type defines the lattice

system, as detailed in Table 1. If the lattice and crystal systems

are the same, the characteristic vectors of the lattice operators

(n̂nmirror and r̂rn-fold) and corresponding lattice points define the

lattice vectors of the conventional cell (also outlined in Table

1). For all cases, these lattice vectors are used to construct an

initial conventional cell. The aim is to find a conventional cell

whose corresponding symmetry operators [tabulated in ITC in

Table 11.2.2.1 (Hahn, 2002)] are validated for the crystal,

which can have symmetry equal to or less than the lattice. If a

mismatch in cardinality is encountered, permutations of the

lattice vectors are attempted. Should a mismatch remain after

all permutations have been exhausted, the conventional cell is

re-formed to reflect the crystal symmetry. The re-formed cell

is chosen based on the observed cardinality of the symmetry

operations (refer again to Table 1).

The resulting crystal point-group set and internal transla-

tions (lattice centerings) are then used to filter candidate

space groups. To pin down a space group exactly, the

symmetry elements of the crystal are matched to the ITC

generators, i.e. the operations that generate the symmetry-

equivalent atoms for the general Wyckoff position (Hahn,

2002). However, a shift in the origin may differentiate the two

sets of operators; this is a degree of freedom that should be

addressed carefully. The appropriate origin shift should

transform the symmetry elements to the ITC generators, thus

forming a set of linear equations. Consider two symmetry-

equivalent atom positions (x and x0) in the crystal,

x0 ¼ Uxþ t; ð9Þ

where U and t are the fixed-point and translation operations,

respectively, between the two atoms. An origin shift O relates

these positions to those listed in ITC:

xITC ¼ xþO; ð10Þ

x0ITC ¼ x0 þ O: ð11Þ

Applying U to equation (10) and subtracting it from equation

(11) yields

x0ITC �UxITC ¼ x0 þ O �Ux�UO: ð12Þ

The ITC translation tITC and the crystal translation t are

related via

tITC ¼ tþO�UO: ð13Þ

Combining equations (12)–(13) and incorporating equations

(10)–(11) produces the following system of equations:

ðI�UÞO ¼ tITC � t
� �

; ð14Þ

where I is the identity. Equation (14) must be solved for each

generator, often resulting in an overdetermined system.

Periodic boundary conditions should also be considered when

solving the system of equations, as solutions may reside in

neighboring cells. If a commensurate origin shift is not found,

the next candidate space group is tested.

With the shift into the ITC reference frame, the Wyckoff

positions are identified by grouping atoms in the conventional

cell into symmetry-equivalent sets. These sets are compared

with the ITC standard to identify the corresponding Wyckoff

coordinates, site-symmetry designation and letter. The

procedure to find the origin shift is similarly applied to

determine any Wyckoff parameters (x, y, z). For some space

groups, the Wyckoff positions only differ by an internal

translation (identical site symmetries), introducing ambiguity

in their identification. In these cases, AFLOW-SYM favors the

Wyckoff scheme producing the smallest enumerated Wyckoff

lettering.
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Figure 4
Minimum symmetry identifiers of the lattice system: (a) mirror
operations, (b) n-fold rotations. The resulting lattice vectors are denoted
by gray dotted lines.

Table 1
Conventional cell construction rules based on symmetry operations.

Lattice/crystal
system

No. of
mirrors

No. of n-fold
rotations Conventional cell

Cubic 9 3 (fourfold) a; b; c: parallel to three
equivalent fourfold axes

Hexagonal 7 1 (three-/sixfold) c: parallel to three-/sixfold
axis

a; b: parallel to mirror axes
(jaj � jbj and � = 120�)

Tetragonal 5 1 (fourfold) c: parallel to fourfold axis
a; b: parallel to mirror axes

(jaj � jbj and � = 90�)

Rhombohedral 3 1 (three-/sixfold) c: parallel to three-/sixfold
axis

a; b: parallel to mirror axes
(jaj � jbj and � = 120�)

Orthorhombic 3 — a; b; c: parallel to three
mirror axes

Monoclinic 1 — b: parallel to mirror axis
(unique axis)

a; c: parallel to two (choice
of three) smallest
translations perpendicular
to b (Hahn, 2002)

Triclinic 0 — a; b; c: same as original
lattice



After finding the Wyckoff positions,

the algorithm is complete. AFLOW-

SYM returns the space group,

conventional cell and Wyckoff posi-

tions in the ITC standard representa-

tion.

2.5. Input orientation symmetry algo-
rithm

The standard conventional cell

representation described in the

previous section affords easy access to

the full symmetry profile of the struc-

ture. Nevertheless, other representa-

tions, such as the AFLOW standard

primitive representation (Setyawan &

Curtarolo, 2010), are often preferred

for reducing the computational cost of

subsequent calculations/analyses, such

as density-functional-theory calcula-

tions (Setyawan & Curtarolo, 2010).

While conversions are always possible,

such as with a Minkowski lattice

reduction or as was done to find the

standard conventional cell, in practice

they introduce errors in the structural

parameters, becoming particularly

problematic in ‘confusion’ tolerance

regions (Fig. 2) and tolerance-sensitive

algorithms, e.g. calculations of force

constants (Jahnátek et al., 2011; Plata et

al., 2017). To mitigate the need for

error-accumulating conversions, a

general-representation symmetry

algorithm is also incorporated in

AFLOW-SYM. The integration of the

two symmetry algorithms affords

additional validation schemes that

combat ‘confusion’ tolerance regions and ensures an overall

stricter consistency. The full workflow of this algorithm is

outlined in Fig. 5. For descriptions of the different symmetry

groups, refer to Appendix A.

First, the point group of the lattice is calculated by finding

all identical lattice cells of an expanded grid (see x2.7). The

unique set of matrices that transform the rotated cells to the

original cell define the lattice point group, as depicted in Fig.

5(a). The search first considers all lattice points within a radius

no smaller than that of a sphere encapsulating the entire unit

cell. These points define the candidate lattice vectors (origin to

lattice point), and those not of length a, b or c (lattice-vector

lengths of the original cell) are eliminated. Next, all combi-

nations of these candidate lattice vectors are considered,

eliminating sets by matching the full set of lattice parameters

(lattice-vector lengths and angles of the original cell). The

transformation matrix is calculated as

Uc ¼ LðL0Þ�1
ð15Þ

where Uc is the Cartesian form of the transformation (rota-

tion) matrix, L is the original, column-space matrix repre-

sentation of the lattice and L0 is the rotated lattice. The

fractional form of the transformation matrix ðUfÞ is

similarly derived replacing L and L0 with their fractional

counterparts (the fractional form of L is trivially the identity

matrix).

The calculation of the lattice point group allows rapid

determination of its reciprocal-space counterpart, describing

the point-group symmetry of the Brillouin zone. The trans-

formation of symmetry operators is straightforward, following

standard basis-change rules in dual spaces. A contragredient

transformation converts the real-space form of the operator to

its reciprocal counterpart, which is trivial for the Cartesian

form of the operator (orthogonal matrix):
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Figure 5
Workflow for the algorithm for calculating the symmetry operations of the system in its original
representation. Functions are represented by blue rectangles and validation schemes by orange
diamonds.



Vc ¼ ðU
�1
c Þ

T
¼ Uc;

Vf ¼ ðU
�1
f Þ

T; ð16Þ

where Uc/Uf and Vc/Vf are the Cartesian/fractional forms of

the symmetry operator in real and reciprocal spaces, respec-

tively (Sands, 1982).

Next, the coset representatives of the factor group are

determined, characterizing the symmetry of the unit cell.

These operations are characterized by a fixed-point rotation

(lattice point group) and an internal translation that yield an

isomorphic mapping among the atoms. The smallest set of

candidate translation vectors can be found among atoms of

the least frequently occurring species. This symmetry

description is represented by Fig. 5(b).

The point group of the crystal is then extracted from the

coset representatives of the factor groups. By exploiting the

homomorphism (or isomorphism for primitive cells) between

the factor group and the crystal point group, the internal

translations of the coset representatives are removed and the

unique elements yield the crystal point group. This is

portrayed in Fig. 5(c). The dual-space counterpart of the

crystal point group is derived by performing the contra-

gredient transformation, as shown in equation (16).

The space-group operations are similarly derived from the

coset representatives of the factor group. The space group

describes the symmetry of the infinitely periodic crystal,

resulting from the propagation of the unit-cell symmetry

throughout the lattice. A finite set of space-group operators is

generated by applying the lattice translations to each of the

coset-representative operations out to a specified radius. The

operation is depicted in Fig. 5(d).

The coset representatives of the factor group also resolve

the symmetry-equivalent atoms (Wyckoff positions). Atoms

that are symmetry-equivalent map onto one another through a

coset-representative operation. This organization is conve-

nient for calculating the site symmetry of each atom site in the

crystal. The site symmetries, or site point groups, are exposed

by centering the reference frame onto each atomic site and

applying the operations of the crystal point group, as illu-

strated in Fig. 5(e). To expedite this process, the site symme-

tries are explicitly calculated for all inequivalent atoms. They

are then propagated to equivalent atoms with the appropriate

change of basis (dictated by the coset representative mapping

the inequivalent atom to the equivalent atom).

2.6. Consistency of symmetry

There are a finite number of operation sets that a crystal can

exhibit (Giacovazzo et al., 2011). A set of symmetry operations

outside of those allowed by crystallographic group theory are

attributed to noisy data, thus warranting the adaptive toler-

ance scan. Numerous symmetry rules are validated throughout

the AFLOW-SYM routines. The list of consistency checks is:

(i) Point group (lattice/crystal) contains (at the very least)

the identity element.

(ii) Point group (lattice/crystal) matches one of 32 point

groups.

(iii) Coset representative of the factor group is an integer

multiple of the crystallographic point group (homomorphic/

isomorphic condition).

(iv) Space-group symbol decomposes into the crystal-

lographic point-group symbol by removing translational

components (with the exception of derivative structures).

(v) Number of symmetry-equivalent atoms is divisible by

the ratio of the number of operations in the factor and crystal

point groups.

(vi) Space-group and Wyckoff positions match ITC

conventions (Hahn, 2002).

2.7. Exploring the atomic environment

A description of the local atomic environments in a crystal

is required for determining the atom coordinations and atom/

lattice mappings. Depending on the cell representation, an

expansion is generally warranted for sufficient exploration of

the nearest neighbors. Here, an algorithm is outlined for

determining the number of neighboring cells to explore in

order to capture the local environment within a given

exploration radius (rsphere). In AFLOW-SYM, the default

exploration radius is the largest distance between any two

lattice points in a single unit cell. First, the normal of each pair

of lattice vectors is calculated and scaled to be of length rsphere,

e.g. n1 ¼ rsphereb� c= b� ck k, where b and c are lattice

vectors. Next, the scaled normals are converted to the basis of

the lattice, e.g. n01 ¼ L�1n1, where L is the column-space

matrix representation of the lattice. The magnitude (rounded

up to the nearest integer) of the ith component of the n0i vector

reveals the pertinent grid dimensions ðd1; d2; d3Þ. A uniform

sphere of radius rsphere centered at the origin fits within a three-

dimensional grid spanning ½�di; di	.

3. Results

Highlighted here are benchmarks to compare the various

standard symmetry packages: AFLOW-SYM, Spglib,

FINDSYM and PLATON. The results are calculated with the

most recent versions available for download: (i) AFLOW

version 3.1.169, (ii) Spglib version 1.10.2.4, (iii) FINDSYM

version 5.1.0, (iv) PLATON version 30118.

The default tolerances are employed as reported by the

authors: (i) AFLOW-SYM: "tight ¼ dnnðminÞ
c =100, (ii) Spglib:

symprec ¼ 1� 10�5 Å, angle tolerance derives from

symprec [default listed on the web page (Togo, 2017b)], (iii)

FINDSYM: "lattice = 1 � 10�5 Å, "atomic position = 1 � 10�3 Å

[default from web interface (Stokes et al., 2017)], (iv)

PLATON: "metric = 1.00�, "rotation = 0.25 Å, "inversion = 0.25 Å,

"translation = 0.25 Å (Le Page, 1987).

Alternative tolerance values are also used for Spglib,

FINDSYM and PLATON. In general, the alternative toler-

ances are 100 times the default tolerances, except in the case of

PLATON, where the default tolerances are divided by 100: (i)

Spglib: symprec ¼ 1� 10�3 Å, (ii) FINDSYM: "lattice = 1 �

10�3 Å, "atomic position = 1 � 10�1 Å, (iii) PLATON: "metric =
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0.01�, "rotation = 2.5 � 10�3 Å, "inversion = 2.5 � 10�3 Å, "translation

= 2.5 � 10�3 Å.

The results from the alternative tolerances are denoted

by þ.

3.1. Accuracy of space-group analyses

The CIF files stored in the ICSD contain information such

as the structural parameters and atomic species/positions, as

well as the space group (often reported from experiments),

publication date and citation. The experimentally reported

space-group information provides a unique validation oppor-

tunity for the various symmetry packages. The mismatch

counts between the reported and calculated space groups are

shown in Table 2. The counts are additionally broken down by

lattice and crystal system (Fig. 6) to highlight the severity of

the mismatch. The full comparison of results is provided in the

supporting information, organized in tables by the reported

crystal system, with mismatches highlighted in red.

AFLOW-SYM shows the best agreement with the ICSD

with a deviation of about 1.5% (reduced to 1.3% if the

mismatch is rectified at the loose tolerance). The mismatch is

almost halved when comparing only the lattice and crystal

systems, suggesting the algorithm found similar/nearby space

groups (e.g. see Fig. 2). Using their respective default toler-

ances, PLATON performs second best with a 5.6% deviation,

followed by FINDSYM and Spglib with deviations of about

6.6% and 18.5%, respectively. With the alternative tolerances,

the overall number of mismatches decreases for each package:

PLATON reduces to 2.3%, FINDSYM reduces to 2.0% and

Spglib reduces to 6.3%. Table 2 also shows that there are a

number of systems for which FINDSYM and PLATON are

unable to identify any space group.

Fig. 6 illustrates the space-group mismatch from each

package organized by lattice type. Overall, AFLOW-SYM is

the most consistent with the ICSD for all lattice types for both

the default and alternative tolerances, except for cubic systems

where FINDSYM has one less mismatch than AFLOW-SYM

using the alternative tolerance. The default tolerance values

certainly play a role in the large deviation count, e.g. a tighter

tolerance can yield a lower symmetry than expected. This is

evident with hexagonal and rhombohedral lattices, where

Spglib resolves isomorphic subgroups neglecting the three-/

sixfold rotations (see the supporting information). However,

increases in tolerance do not necessarily yield more consistent

space-group determinations. Fig. 6 shows that the default

tolerance is more accurate than the alternative tolerance for
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Table 2
Mismatch counts between reported and calculated space groups for
entries in the ICSD.

The test set is comprised of 54 015 ICSD entries stored in the http://
www.aflow.org/ repository, as of 6 October 2017. The columns indicate the
number of entries whose space group, lattice type and crystal family do not
match those reported by the ICSD. The results using the user-defined/non-
default tolerance values for Spglib, FINDSYM and PLATON are shown in
parentheses. For more details, refer to the supporting information.

Package

No. of
space-group
mismatches

No. of
lattice
mismatches

No. of
crystal system
mismatches

No. with
space group
not found

AFLOW-SYM 834 420 377 0
Spglib 10022 (3389) 9644 (2917) 9523 (2832) 0 (0)
FINDSYM 3540 (1067) 3066 (531) 2982 (483) 127 (156)
PLATON 3000 (1217) 1092 (588) 1083 (486) 195 (1351)†

† Indicates two entries for which the space-group calculation exceeded 48 h.

Figure 6
Breakdown of space-group mismatches with the ICSD organized by lattice type. The lattice types are derived from the space-group number reported in
the ICSD. The superscript + indicates the results using the user-defined/non-default tolerance values. The lattice abbreviations are as follows: triclinic
(tri), monoclinic (mcl), base-centered monoclinic (mclc), orthorhombic (orc), base-centered orthorhombic (orcc), body-centered orthorhombic (orci),
face-centered orthorhombic (orcf), tetragonal (tet), body-centered tetragonal (bct), hexagonal (hex), rhombohedral (rhl), cubic (cub), body-centered
cubic (bcc), and face-centered cubic (fcc).



the triclinic (tri) and body-centered tetragonal (bct) systems

calculated by Spglib and FINDSYM, respectively. To guar-

antee consistent symmetry results, users of Spglib, FINDSYM

and PLATON should tune the tolerance for each system. The

structure-specific tolerance choice and adaptive tolerance

scheme incorporated into AFLOW-SYM allow for the auto-

matic calculation of results that are generally consistent with

experiments.

Overall, the results indicate the strength of the AFLOW-

SYM approach. Other packages can reach similar perfor-

mance to AFLOW-SYM, but they require continuous ad hoc

user adjustments of tolerances, possibly producing results

incommensurate with other characteristics of the systems, such

as its Pearson symbol. Only the self-consistent approach of

AFLOW-SYM is ripe for the automation required by auton-

omous materials design.

3.2. Symmetry characterizations and representations

Of primary concern among the various standard packages is

the identification and characterization of crystal symmetry, i.e.

a symmetry description considering the lattice and basis of

atoms. In addition, AFLOW-SYM characterizes crystals with a

sequence of symmetry-breaking features, including the lattice,

superlattice (lattice with a uniform basis), crystal and crystal

spin. With the progression of symmetry breaking, each char-

acterization offers a new dimension of physical insight, and is

of particular importance for understanding complex

phenomena (Matano et al., 2016). The suite of characteriza-

tions offered by each package is presented in Table 3.1 With

integration into the automated framework AFLOW, new tools

and symmetry descriptions will continue to be incorporated.

The forums at http://aflow.org/forum/ are the venues for

presenting updates and discussing new functionalities.

Anticipated future work includes going beyond translationally

invariant structures and characterizing disordered/off-stoi-

chiometric structures (Yang et al., 2016; Perim et al., 2016).

Furthermore, AFLOW-SYM presents the symmetry

operations in a wealth of representations. Both AFLOW-SYM

and Spglib explicitly offer representations for the symmetry

operations.2 Table 4 compares the operation representations

provided by the two packages. Both provide the unit-cell

symmetry operators (coset representatives of the factor

group). AFLOW-SYM offers the symmetry operations in the

rotation-matrix (Cartesian and fractional) and axis–angle,

generator and quaternion representations (Karney, 2007;

Fritzer, 2001), while Spglib only provides the rotation-matrix

representation in its fractional form. AFLOW-SYM also

presents the corresponding mappings for each symmetry

operation, almost entirely eliminating the need to reapply the

operators for symmetry-reduced analyses such as calculating

the force constants (Jahnátek et al., 2011; Plata et al., 2017).

Along with the factor-group coset representatives, AFLOW-

SYM provides the lattice point group, reciprocal-lattice point

group, crystal point group, dual of the crystal point group, site

point group and space-group symmetry operators. Catering to

electronic structure calculations, AFLOW-SYM also returns

additional symmetry information not explicitly provided by

other routines, such as the Pearson symbol, Bravais lattice

type and Bravais lattice variation, necessary for constructing

the most efficient Brillouin zone (Setyawan & Curtarolo,

2010). The full set of descriptions and representations offered

by AFLOW-SYM is detailed in Appendix B.

4. Using AFLOW-SYM

4.1. Input/output formats

AFLOW-SYM reads crystal-structure information from a

geometry file containing the lattice vectors and atomic coor-
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Table 3
List of the symmetry descriptions provided by each of the four packages.

The superlattice analysis refers to the structure symmetry if each atomic site is
decorated equally (same atom type), while crystal spin indicates the structure
symmetry including the magnetic moment of each atom. Adding the keyword
EQUAL to the Platon command performs a superlattice analysis.

Symmetry AFLOW-SYM Spglib FINDSYM PLATON

Lattice
p

Superlattice
p p

ðEQUALÞ

Reciprocal lattice
p

Crystal
p p p p

Crystal spin
p p p

Table 4
List of operation representations provided by AFLOW-SYM compared
with Spglib.

The internal translations are only applicable for the coset representative of the
factor-group and space-group symmetry operators. Likewise, the lattice
translations are only applicable for the space-group symmetry operators.

Operator information AFLOW-SYM Spglib

Operator type
p

Hermann–Mauguin
p

Schönflies
p

Transformation matrix (Cartesian)
p

Transformation matrix (fractional)
p p

Generator matrix
p

so(3) coefficients (Lx;Ly;Lz)
p

Angle
p

Axis
p

Quaternion (vector)
p

Quaternion (2� 2 matrix)
p

Quaternion (4� 4 matrix)
p

su(2) coefficients (Pauli)
p

Inversion Boolean
p

Internal translation (Cartesian)
p

Internal translation (fractional)
p p

Atom index map
p

Atom type map
p

Lattice translation (Cartesian)
p

Lattice translation (fractional)
p

1 Some packages provide more information than listed in Table 3. For
example, PLATON presents additional useful structural/chemical information
such as bonding, coordination, planes and torsions. However, the comparison
presented in Table 3 is limited to symmetry information pertaining to space
groups.
2 FINDSYM and PLATON do provide the general Wyckoff position, although
they do not explicitly present the symmetry operators.



dinates (coordinate model), which is treated as the bona fide

representation of the structure. Information can be lost during

the transcription of the X-ray diffraction/reflection data to the

coordinate model, resulting in a lower-symmetry profile. While

a means to verify the two representations offers higher-fidelity

symmetry descriptions, the diffraction data are not nearly as

accessible as the coordinate-model representation. Further-

more, the geometry file is the de facto input format for ab initio

packages and thus AFLOW-SYM resolves the material’s

symmetry based on this representation.

With AFLOW-SYM well integrated into the high-

throughput ab initio software package AFLOW, it can process

many standard input file types, including that of the ICSD/

CSD (Bergerhoff et al., 1983; Belsky et al., 2002; Groom et al.,

2016) (CIF), VASP (Kresse & Hafner, 1993, 1994; Kresse &

Furthmüller, 1996a,b) (POSCAR), QUANTUMESPRESSO

(Giannozzi et al., 2009), ABINIT (Gonze et al., 2002) and FHI-

AIMS (Blum et al., 2009).

Furthermore, all symmetry functions support the JSON

object output format. This allows AFLOW-SYM to be

employed from other programming languages such as Java,

Go, Ruby, Julia and Python, facilitating smooth integration

into numerous applications and workflows (Supka et al., 2017;

Scheffler & Draxl, 2014). These functionalities can be accessed

by either the command line or a Python environment. A

summary of the output for each command is provided in

Appendix D2.

4.2. Command-line options

There are three main functions that provide all symmetry

information for a given input structure. These functions allow

an optional tolerance value (tol) to be specified via a number

or the strings ‘tight’ or ‘loose’ corresponding to "tight and "loose,

respectively. To perform the symmetry analysis of a crystal, the

functions are called with the following commands.

aflow ��aflowSYM½¼htoli	 ½� � print¼txtj json	<file:

Calculates and returns the symmetry operations for the lattice

point group, reciprocal-lattice point group, coset representa-

tives of the factor group, crystal point group, dual of the crystal

point group, site symmetry and space group. It also returns the

unique and equivalent sets of atoms.

aflow ��edata½¼ htoli	 ½� � print ¼ txtj json	<file:

Calculates and returns the extended crystallographic

symmetry data (crystal, lattice, reciprocal lattice and super-

lattice symmetry), while incorporating the full set of checks

[x2.6, (i)–(vi)] for robust symmetry determination.

aflow ��sgdata½¼ htoli	 ½� � print ¼ txtj json	<file:

Calculates and returns the space-group symmetry of the

crystal, while only validating that the symmetry descriptions

match with the ITC conventions [x2.6, (vi)].

Square brackets ½. . .	 indicate optional arguments. The

�� print flag specifies the output format. The �� aflowSYM

function stores the isometries of the different symmetry

groups to their own files aflow:hgroupi:out or

aflow:hgroupi:json. The hgroupi labels are as follows:

pgroup (lattice point group), pgroupk (reciprocal-

lattice point group), fgroup (coset representatives of the

factor group), pgroup xtal (crystal point group),

pgroupk xtal (dual of the crystal point group), agroup (site

symmetry) and sgroup (space group).

Crystal spin symmetry functionality is also available in

AFLOW-SYM. The magnetic moment of each site (collinear

or non-collinear) can be specified for each of the

commands listed above by adding the magnetic moment

flag: ½� � magmom ¼ m1;m2; . . . jINCARjOUTCAR	. The magnetic

moment information can be specified in three formats: (i)

explicitly via m1, m2; . . . ;mn in the same order as the input file

(or m1;x;m1;y;m1;z;m2;x; . . . ;mn;z for non-collinear), (ii) read

from the VASP INCAR or (iii) the VASP OUTCAR.

Magnetic moment readers for other ab initio codes will be

added in later versions.

4.3. Python environment

Given the recent prevalence of Python programming, we

offer a module that employs AFLOW-SYM within a Python

environment (see Appendix D1). It connects to a local

AFLOW installation and imports the AFLOW-SYM results

into a Symmetry class. A Symmetry object is initialized with

the code shown in Fig. 7.

By default, the Symmetry object searches for an AFLOW

executable in the PATH. However, the location of an AFLOW

executable can be specified as follows:

Symmetryðaflow executable ¼ ‘your executable0Þ:

The symmetry object has three built-in methods, which

correspond to the command-line calls mentioned previously:

get symmetryðinput file; tol; magmomsÞ

get edataðinput file; tol; magmomsÞ

get sgdataðinput file; tol; magmomsÞ

Each method requires a Python file handler ðinput fileÞ,

while the tolerance (tol) and magnetic moments of each site

(magmoms) are optional arguments.

4.4. AFLOW-SYM support

Functionality requests and bug reports should be posted on

the AFLOW forum http://aflow.org/forum/ under the board

‘Symmetry analysis’.
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Figure 7
An example Python script that leverages the AFLOW-SYM Python
module to return a dictionary containing the relevant symmetry
information. The optional tolerance (tol) and magnetic moment
(magmoms) arguments can be specified with each method. A copy of
this script is available for download in the supporting information.



5. Conclusion

In this article, we present AFLOW-SYM, a symmetry platform

catered to, but not limited to, high-throughput frameworks.

We address problems stemming from numerical tolerance in

symmetry analyses by using a mapping procedure uniquely

designed to handle skewed cells and an advanced adaptive

tolerance scheme. AFLOW-SYM also includes consistency

checks of calculated isometries with respect to symmetry

principles. These solutions are validated against the experi-

mental data for structures reported by the ICSD. Comparison

with other symmetry-analysis suites, Spglib, FINDSYM and

PLATON, shows that AFLOW-SYM is the most consistent

with the ICSD.

For general use of AFLOW-SYM, the routines include both

a standard text output and a JSON output for easy integration

into other computational workflows. Lastly, a comprehensive

list of the symmetry descriptions is presented (see Appendix

D2), illustrating the vast amount of symmetry information

available to users of AFLOW-SYM.

APPENDIX A
Crystallographic symmetry

A1. Mathematical group

A group is an abstract mathematical structure comprised of

a set of elements (g) and an operation that combines two

elements to form a third (Tinkham, 1964). There are four

axioms that a group satisfies:

(1) Closure: the combination of two elements with the

operator yields an element that exists in the set; it does not

create a new element outside the set.

(2) Associativity: the order of combining elements with the

operator is inconsequential given the sequence of operands is

unaltered.

(3) Identity: there exists a neutral element (I) that when

combined with another element leaves that element

unchanged (gI ¼ g).

(4) Inverse: for each element g in the set, there exists a

corresponding inverse element g�1 such that gg�1 ¼ I.

An abelian group includes the additional axiom of

commutativity. These rules are the foundation of group theory

and underline the construction of the different symmetry

groups.

A2. Point group

A point group is a set of symmetry transformations about a

fixed point fU1;U2; . . . ;Ung that leave a system invariant.3

The elements of the group are classified as (i) n-fold rotations,

where n describes the rotation order (i.e. the number of

symmetric points it generates), (ii) inversions and (iii) roto-

inversions, which are compound operations comprised of a

rotation and inversion. Three-dimensional crystals are

confined to one of 32 point groups owing to the crystal-

lographic restriction theorem, which limits the rotation order

in a periodic system to two-, three-, four- and sixfold (Hahn,

2002). The 32 crystallographic point groups are categorized

into one of seven crystal systems: cubic, hexagonal, trigonal,

tetragonal, orthorhombic, monoclinic and triclinic. The clas-

sifications are based on the lattice parameters (a, b, c, �, �, �)

of the crystal.

Cubic: a ¼ b ¼ c, � ¼ � ¼ � = 90�.

Hexagonal/trigonal: a ¼ b 6¼ c, � ¼ � = 90�, � = 120�.

Tetragonal: a ¼ b 6¼ c; � ¼ � ¼ � = 90�.

Orthorhombic: a 6¼ b 6¼ c; � ¼ � ¼ � = 90�.

Monoclinic: a 6¼ b 6¼ c; � ¼ � = 90�, � 6¼ 90�.

Triclinic: a 6¼ b 6¼ c; � 6¼ � 6¼ � 6¼ 90�.

In crystallography, two types of point groups are of parti-

cular importance: the lattice and crystal (vector) point group.

Each operates in a different space: the lattice point group

characterizes the symmetry of the lattice points (an affine

space), while the crystal point group additionally considers the

atomic basis and acts on the underlying vector space of the

crystal face normals. Fundamentally, the vector space captures

the symmetry of the macroscopic crystal (Hahn, 2002). The

crystal point-group operations are defined as the linear

mappings of the vector space, i.e. the unique set of fixed-point

transformations of the factor group4 (Hahn, 2002; Nespolo &

Souvignier, 2009). Owing to symmetry breaking from the

atomic basis, the cardinality of the crystal point group is at

most as large as that of the lattice. Furthermore, the dual

(reciprocal) counterparts of the lattice and crystal point group

play an important role in electronic structure theory: resolving

the symmetries of the Brillouin and irreducible Brillouin

zones, respectively. In AFLOW-SYM, the output for the

lattice, reciprocal lattice, crystal and dual of the crystal point-

group operations are labeled pgroup, pgroupk, pgroup xtal

and pgroupk xtal, respectively.

A3. Space group

In periodic systems, translational symmetry gives rise to

another mathematical group: the space group. Its elements are

comprised of those found in the point group, along with glide

(mirror and translation) and screw (rotation and translation)

operations. The translational degree of freedom extends the

number of unique sets of symmetry operations to 230. The

translations of a crystal are divided into lattice translations (T)

and internal translations (t):

U1;U2; . . . ;UnjTþ t
� �

: ð17Þ

Subsequently, a space group describes the full symmetry of a

periodic system. The space-group operations are labeled

sgroup in AFLOW-SYM.
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3 Here, the rotation matrix U is used to represent the different symmetry
groups; however, rotation elements can also be described in axis–angle,
matrix-generator and quaternion form.

4 Without the relevant internal translations (complete coset representatives),
the crystal point-group operations do not generally apply in the affine point
space (lattice points and atoms), as is the case for non-symmorphic space
groups. Conversely, the set of operations that do apply in the point space
define the site symmetries.



A4. Factor group

From the space group, the elements of the factor group are

defined as the cosets of the subgroup of lattice translations

(T):

Ij0f g IjTf g; Uijti

� �
IjTf g; Ujjtj

� �
I;Tf g; . . . ; ð18Þ

where Ui are the point-group operations, ti are the associated

internal translations and I is the identity. The unit-cell

symmetry is exposed via the coset representatives:

Ij0f g; Uijti

� �
; Ujjtj

� �
; . . . : ð19Þ

The coset representatives themselves do not necessarily form

a mathematical group, since they violate the closure condition.

Repeated application of an internal translation will eventually

traverse beyond the unit cell. The unit-cell symmetry elements

(coset representatives) are labeled fgroup in AFLOW-SYM.

In general, there exists a homomorphism between the factor

group and the crystal point group, i.e. the factor group

cardinality is an integer multiple of the crystal point-group

cardinality. The multiplicative factor (m) is dictated by the

number of internal translations in the system. A crystal in a

primitive representation exhibits an isomorphic correspon-

dence (m = 1), while non-primitive representations possess the

general homomorphic relationship (m> 1).

A5. Site point group

The site point group – or site symmetry – describes the

point-group symmetry centered on a single site in the crystal,

revealing the local symmetry environment. The analysis is

performed on each atomic site in the crystal, with symmetry-

equivalent atoms (Wyckoff positions) exhibiting the same

point-group symmetries. The origin of the fixed-point opera-

tions differentiates the site symmetry from the lattice/crystal

point group, which are centered on the unit-cell origin. In the

finite-difference method for calculating phonons, the unique

distortions for a given atomic site are resolved with its site

symmetry (Jahnátek et al., 2011; Plata et al., 2017). In

AFLOW-SYM, the site-symmetry elements are designated by

agroup (‘atomic site group’).

A6. Crystal spin symmetry

Introducing the spin degree of freedom can break crystal

symmetry. AFLOW-SYM includes functionality for a crystal

spin (lattice, atoms and spin) description, including the rele-

vant point-group, factor-group, space-group and site-

symmetry operations. For magnetic systems, these are the

symmetry descriptions employed by ab initio packages, such as

VASP (Kresse & Hafner, 1993, 1994; Kresse & Furthmüller,

1996a,b). Note that the crystal spin symmetry differs from the

magnetic symmetry, which accounts for time-reversal

symmetry (spin flips). The magnetic symmetry will be incor-

porated into AFLOW-SYM in a later version.

APPENDIX B
Mathematical representation of symmetry

Symmetry elements are characterized into three types of

transformation: translation, fixed-point and fixed-point-free (a

combination of the two, i.e. screw and glide operations)

(Hahn, 2002). Translations are generally indicated by 3 � 1

vectors:

t ¼

t1

t2

t3

0@ 1A: ð20Þ

Fixed-point symmetries O(3) describing rotations, inversions

and roto-inversions are represented by rotation matrices. The

rotation symmetries SO(3), i.e. a subgroup of the orthogonal

group O(3), can be represented in three additional forms:

axis–angle, matrix-generator and quaternions. AFLOW-SYM

provides the symmetry operations for rotations in each of

these four forms, which are discrete subgroups of the contin-

uous SO(3) group.

B1. Rotation matrix

A rotation matrix describes a transformation between two

reference frames. In three dimensions, the symmetry operators

are 3 � 3 square matrices with the following form:

U ¼

u11 u12 u13

u21 u22 u23

u31 u32 u33

0@ 1A: ð21Þ

All transformations are unitary (norm-preserving) and

therefore have detðUÞ ¼ 
1. The matrix representation

affords fast computation through use of optimized linear

algebra computational packages.

B2. Axis–angle

Rotation operations are also characterized by their axis and

angle of rotation. The axis, r̂r ¼ ðr1; r2; r3Þ, indicates the

direction of the rotation operator, pointing perpendicular to

the fixed-point motion. The angle, �, specifies the magnitude of

the rotational motion (following the right-hand rule). The

angle and axis components are related to the matrix elements

of U by

� ¼ cos�1

�
TrðUÞ � 1

2

	
;

rd ¼ ½ðu32 � u23Þ
2
þ ðu13 � u31Þ

2
þ ðu21 � u12Þ

2
	
1=2;

r1 ¼
u32 � u23

rd

; r2 ¼
u13 � u31

rd

; r3 ¼
u21 � u12

rd

; ð22Þ

where TrðUÞ is the trace of U. The axis–angle representation is

directly applied to a point p via Rodrigues’ rotation formula

prot ¼ p cos � þ ðr̂r� pÞ sin h þ r̂rðr̂r � pÞð1� cos hÞ; ð23Þ

where prot is the rotated point. This description highlights the

operation order n via n = 360�/� and identifies the conven-

tional cell lattice vectors, since they are parallel to certain

symmetry axes.
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B3. Matrix generator

The Lie group SO(3) grants the use of the corresponding

Lie algebra so(3), which are comprised of the infinitesimal

matrix generators G. The generator is a skew-symmetric

matrix that describes the rotation about a symmetry axis, with

the following form:

G ¼

0 �r3 r2

r3 0 �r1

�r2 r1 0

0@ 1A; ð24Þ

where r1, r2, r3 are the components of the symmetry unit axis r̂r.

The identity and inverse elements have no axis; therefore, the

generator is not defined and is returned as a zero matrix.

While the rotation matrix transforms one reference frame to

another, the generator operates about a single axis. The matrix

exponential of the generator with the angle maps the opera-

tions into the rotation matrix form [U ¼ expðhGÞ]. For

convenience, AFLOW-SYM returns the generator multiplied

with the angle A ¼ hG. AFLOW-SYM also provides the

expansion coefficients of the generator matrix onto the

following so(3) basis:

G ¼ xLx þ yLy þ zLz ð25Þ

where

Lx ¼

0 0 0

0 0 �1

0 1 0

0B@
1CA;Ly ¼

0 0 1

0 0 0

�1 0 0

0B@
1CA

Lz ¼

0 �1 0

1 0 0

0 0 0

0B@
1CA: ð26Þ

The expansion coefficients x, y and z of this basis set are the

unit axis components r1, r2 and r3, respectively.

B4. Quaternion

A quaternion is a mathematical representation of three-

dimensional space with both real and imaginary components.

Though developed in 1843, the quaternion has only recently

gained relevance through the field of computer graphics and

modeling. As opposed to using a nine-element 3� 3 matrix to

represent a rotation in space, quaternions have a concise

format consisting of four components. The reduced element

count increases computational efficiency and thus is particu-

larly suitable for high-throughput frameworks.

Given an axis and angle, the corresponding quaternion

representation, q ¼ ðq0; q1; q2; q3Þ, is

q0 ¼ cosð�=2Þ;

q1 ¼ r1 sinð�=2Þ;

q2 ¼ r2 sinð�=2Þ;

q3 ¼ r3 sinð�=2Þ; ð27Þ

which are equivalent to the Euler parameters. Alternate forms

of the quaternion are 2� 2 and 4� 4 matrices. The complex 2

� 2 unitary matrix of a quaternion is

C ¼
q0 þ q3i q2 þ q1i

�q2 þ q1i q0 � q3i

� 	
; ð28Þ

which is an element of the SU(2) Lie group. The C matrix can

be expanded onto a basis formed by the Pauli matrices:

r1 ¼
0 1

1 0

� 	
; r2 ¼

0 �i

i 0

� 	
; r3 ¼

1 0

0 �1

� 	
; ð29Þ

where multiplying by i (=
ffiffiffiffiffiffi
�1
p

) yields the following decom-

position:

C ¼ q0Iþ q1ir1 þ q2ir2 þ q3ir3: ð30Þ

The corresponding Lie algebra, su(2), is (Gilmore, 2008)

g ¼
i

2

r3 r1 � r2i

r1 þ r2i �r3

� 	
: ð31Þ

AFLOW-SYM lists the su(2) generator coefficients expanded

on the Pauli matrices

g ¼ xr1 þ yr2 þ zr3; ð32Þ

where the expansion coefficients x, y and z are ði=2Þr1, ði=2Þr2

and ði=2Þr3, respectively. Similar to the SO(3) rotations, the

matrix exponential of the su(2) generator g with the angle

maps the operations into the complex 2 � 2 SU(2) matrix

[C ¼ expðhgÞ]. The 4 � 4 matrix representation of the

quaternion is

Q ¼

q0 q1 q2 q3

�q1 q0 �q3 q2

�q2 q3 q0 �q1

�q3 �q2 q1 q0

0BB@
1CCA; ð33Þ

which includes all four components of the quaternion vector in

a matrix, allowing transformations to be performed through

matrix multiplication rather than quaternion algebra. This

method is useful for performing operations with other trans-

formations in matrix or vector form, whereas the quaternion

vector notation has its own algebra similar to the operations

between complex numbers with an additional scalar compo-

nent (q0).

B5. Basis transformations of operators

The representations of the symmetry operations are basis

dependent and are customarily given with respect to Cartesian

or fractional coordinates systems. It is straightforward to

transform symmetry operations between these vector spaces

via a basis change. In matrix notation, the fixed-point opera-

tion in Cartesian (Uc) and fractional (Uf) coordinates are

related via the following similarity transformations:

Uf ¼ L�1UcL;

Uc ¼ LUfL
�1: ð34Þ

Here, L is the column-space form of the lattice vectors:

L ¼ ða b cÞ ¼

a1 b1 c1

a2 b2 c2

a3 b3 c3

0@ 1A; ð35Þ
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where ai, bi and ci are the corresponding components of the

lattice vectors. A translation vector tcðfÞ is transformed

between Cartesian and fractional coordinates by tf ¼ L�1tc

and tc ¼ Ltf .

B6. Example representations

An example of a threefold rotation in Cartesian coordinates

is shown below in its rotation matrix, axis–angle, matrix-

generator, and quaternion vector and matrix representations.

U3�fold ¼

0 �1 0

0 0 �1

1 0 0

0B@
1CA

r̂r ¼ ð0:57735;�0:57735; 0:57735Þ

� ¼ 120�

A ¼

0:0 �1:2092 �1:2092

1:2092 0:0 �1:2092

1:2092 1:2092 0:0

0B@
1CA

q ¼ ð0:5; 0:5;�0:5; 0:5Þ

C ¼
0:5þ 0:5i �0:5þ 0:5i

0:5þ 0:5i 0:5� 0:5i

� 	

Q ¼

0:5 0:5 �0:5 0:5

�0:5 0:5 �0:5 �0:5

0:5 0:5 0:5 �0:5

�0:5 0:5 0:5 0:5

0BBB@
1CCCA:

APPENDIX C
Extreme cases of minimal-distance discrepancy
between Cartesian and fractional spaces

The bring-in-cell procedure applied to a crystal with lattice

parameters a = b = c = 5 Å, � = � = 90� and � = 60� identifies

the minimum distance between the fractional coordinates

ð0; 0; 1=2Þ and ð1=2; 0; 0Þ to be jjeddmin

c jj = 4.3301 Å, compared

with the true minimum of jjdmin
c jj = 2.5 Å. A more extreme

mismatch occurs if � = 5�, yielding a minimum of jjeddmin

c jj =

4.9952 Å with the bring-in-cell method, differing significantly

from the true minimum of jjdmin
c jj = 0.2181 Å. Applying the

heuristic threshold to the aforementioned skewed examples

give bounds of "max = 1.2130 Å (with dnnðminÞ
c = 2.4259 Å) and

"max = 0.0017 Å (with dnnðminÞ
c = 0.4362 Å) for � = 60� and � =

5�, respectively. Both thresholds are sufficiently below the true

minimum distances – even in the worst cases – validating our

choice of the heuristic threshold.

APPENDIX D
AFLOW-SYM details

D1. Python module

The module to run the AFLOW-SYM commands refer-

enced in x4.3 is provided in Fig. 8.

D2. Output list

This section details the output fields for the symmetry-

group operations, extended crystallographic data (edata) and

space-group data (sgdata) routines. The lists describe the

keywords as they appear in the JSON format. Similar

keywords are used for the standard text output.

Symmetry operations output

pgroup

– Description: lattice point-group symmetry operations.

– Type: array of symmetry operator objects

pgroupk

– Description: reciprocal-lattice point-group symmetry

operations.

– Type: array of symmetry operator objects

fgroup

– Description: coset representative of factor-group

symmetry operations.

– Type: array of symmetry operator objects

pgroup xtal

– Description: crystal point-group symmetry

operations.

– Type: array of symmetry operator objects

pgroupk xtal

– Description: dual of the crystal point-group symmetry

operations.

– Type: array of symmetry operator objects

sgroup

– Description: space-group symmetry operations out to a

given radius.

– Type: array of symmetry operator objects

iatoms

– Description: groupings of symmetry-equivalent/unique

atoms.

– Type: iatom object

agroup

– Description: site- (atom-) symmetry operations (point

group).

– Type: array of symmetry operator objects

Each symmetry group contains an array of symmetry

objects, including the operation representations listed in Table

4. The symmetryoperator object contains the following:

Hermann Mauguin

– Description: Hermann–Mauguin symbol of the symmetry

operation.

– Type: string

Schoenflies

– Description: Schönflies symbol of the symmetry operation.

– Type: string

Uc

– Description: transformation matrix with respect to

Cartesian coordinates.

– Type: 3 � 3 array
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Uf

– Description: transformation matrix with respect to

fractional coordinates.

– Type: 3 � 3 array

angle

– Description: angle corresponding to symmetry

operation.

– Type: float

axis

– Description: axis of symmetry operation.

– Type: 3 � 1 array

generator

– Description: matrix generator of symmetry operation.

– Type: 3 � 3 array

generator coefficients

– Description: matrix-generator expansion coefficients onto

Lx, Ly and Lz basis.

– Type: 3 � 1 array

group

– Description: specifies the group type (pgroup, pgroupk,

fgroup, pgroup xtal, pgroupk xtal, sgroup and

agroup).

– Type: string

research papers
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Figure 8
The AFLOW-SYM Python module. It includes three symmetry methods (get symmetry, get edata and get sgdata). Each method calls the local
AFLOW executable to perform the corresponding symmetry analysis and returns the output to a Python dictionary. A copy of this module is available
for download in the supporting information.



inversion

– Description: indicates if inversion exists.

– Type: bool

quaternion matrix

– Description: quaternion matrix.

– Type: 4 � 4 array

SU2 matrix

– Description: complex quaternion matrix; element of

SU(2).

– Type: 2 � 2 array

su2 coefficients

– Description: su(2) generator coefficients onto Pauli

matrices (r1, r2 and r3).

– Type: 3 � 1 array

quaternion vector

– Description: quaternion vector.

– Type: 4 � 1 array

type

– Description: point-group operation type (unity, rotation,

inversion or roto-inversion).

– Type: string

ctau

– Description: internal translation component in Cartesian

coordinates (fgroup and sgroup only).

– Type: 3 � 1 array

ftau

– Description: internal translation component in fractional

coordinates (fgroup and sgroup only).

– Type: 3 � 1 array

ctrasl

– Description: lattice translation component in Cartesian

coordinates (sgroup only).

– Type: 3 � 1 array

ftrasl

– Description: lattice translation component in fractional

coordinates (sgroup only).

– Type: 3 � 1 array

The iatom object contains:

inequivalent atoms

– Description: symmetry-distinct atom indices.

– Type: array

equivalent atoms

– Description: groupings of symmetry-equivalent atom

indices.

– Type: 2Darray

edata output

lattice parameters

– Description: lattice parameters in units of ångstroms and

degrees (a; b; c; �; �; �).

– Type: 6 � 1 array

– Similar to:

FINDSYM: Lattice parameters, a;b;c,

alpha;beta;gamma:

PLATON: first six fields in the line containing CELL

lattice parameters Bohr deg

– Description: lattice parameters in units of Bohr and

degrees (a; b; c; �; �; �).

– Type: 6 � 1 array

volume

– Description: real-space cell volume.

– Type: float

– Similar to:

PLATON: last field in the line containing CELL.

c over a

– Description: ratio of c and a lattice parameters.

– Type: float

Bravais lattice type

– Description: Bravais lattice of the crystal (FCC, BCC,

CUB, HEX, RHL etc.).

– Type: string

Bravais lattice variation type

– Description: lattice variation type of the crystal in the

AFLOW standard (Setyawan & Curtarolo, 2010).

– Type: string

Bravais lattice system

– Description: Bravais lattice of the crystal.

– Type: string

– Similar to:

PLATON: CrystalSystem column in Cell Lattice

table.

Pearson symbol

– Description: Pearson symbol of the crystal.

– Type: string

crystal family

– Description: crystal family.

– Type: string

crystal system

– Description: crystal system.

– Type: string

point group Hermann Mauguin

– Description: Hermann–Mauguin symbol corresponding to

the point group of the crystal.

– Type: string

– Similar to:

Spglib: SpglibDataset:pointgroup symbol.

point group Schoenflies

– Description: Schönflies symbol for the point group of the

crystal.

– Type: string

point group orbifold

– Description: orbifold of the point group.

– Type: string

point group type

– Description: point-group type of the crystal.

– Type: string

point group order

– Description: number of point-group operations describing

the crystal.

– Type: int
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point group structure

– Description: point-group structure of the crystal.

– Type: string

Laue

– Description: Laue symbol of the crystal.

– Type: string

– Similar to:

PLATON: field after the line containing Laue.

crystal class

– Description: crystal class.

– Type: string

space group number

– Description: space-group number.

– Type: int

– Similar to:

Spglib: SpglibDataset:spacegroup number.

FINDSYM: field after line containing symmetry Int

Tables number.

PLATON: field after line containing No (number).

space group Hermann Mauguin

– Description: Hermann–Mauguin space-group label.

– Type: string

– Similar to:

Spglib: SpglibDataset:International symbol.

FINDSYM: field after line containing symmetry

space group name H�M.

PLATON: field after line containing SpaceGroupH�M.

space group Hall

– Description: Hall space-group label.

– Type: string

– Similar to:

Spglib: SpglibDataset:hall symbol.

FINDSYM: field after line containing space

group:reference setting

PLATON: field after line containing

Spacegroup � Hall.

space group Schoenflies

– Description: Schönflies space-group label.

– Type: string

– Similar to:

Spglib: Spg get schoenflies.

FINDSYM: second field after line containing

SpaceGroup.

PLATON: field after line containing Schoenflies.

setting ITC

– Description: ITC setting of conventional cell

(AFLOW-SYM defaults to the first setting that appears in

ITC and the hexagonal setting for rhombohedral systems).

– Type: int

– Similar to:

Spglib: SpglibDataset:choice.

origin ITC

– Description: corresponding origin shift of the crystal to

align with the ITC representation.

– Type: 3 � 1 array

– Similar to:

Spglib: SpglibDataset:choice.

FINDSYM: field after line containing Origin at.

PLATON: field after line containing

Origin Shifted to.

general position ITC

– Description: general Wyckoff position (x; y; z) as

indicated by ITC.

– Type: 2Darray

– Similar to:

FINDSYM: field after line containing

space group symop operation xyz.

PLATON: in the Symmetry OperationðsÞ table.

Wyckoff positions

– Description: indicates the Wyckoff letter, multiplicity, site

symmetry, position (3� 1 array) and atom name.

– Type: array of objects

– Similar to:

Spglib: get symmetry dataset:wyckoffs (letters

only).

FINDSYM: in the loop with atom prefix.

Bravais lattice lattice type

– Description: Bravais lattice of the lattice.

– Type: string

Bravais lattice lattice variation type

– Description: lattice variation type of the lattice in the

AFLOW standard (Setyawan & Curtarolo, 2010).

– Type: string

Bravais lattice lattice system

– Description: Bravais lattice system of the lattice.

– Type: string

Bravais superlattice lattice type

– Description: Bravais lattice of the superlattice.

– Type: string

Bravais superlattice lattice variation type

– Description: lattice variation type of the superlattice in the

AFLOW standard (Setyawan & Curtarolo, 2010).

– Type: string

Bravais superlattice lattice system

– Description: Bravais lattice system of the superlattice.

– Type: string

Pearson symbol superlattice

– Description: Pearson symbol of the superlattice.

– Type: string

reciprocal lattice vectors

– Description: reciprocal-lattice vectors.

– Type: 3 � 3 array

reciprocal lattice parameters

– Description: reciprocal-lattice parameters (a; b; c, �; �; �).

– Type: 6 � 1 array

reciprocal volume

– Description: reciprocal-cell volume.

– Type: float
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reciprocal lattice type

– Description: Bravais lattice of the reciprocal lattice (FCC,

BCC, CUB, HEX, RHL etc.).

– Type: string

reciprocal lattice variation type

– Description: lattice variation type of the reciprocal lattice

in the AFLOW standard (Setyawan & Curtarolo, 2010).

– Type: string

reciprocal lattice system

– Description: lattice system of the reciprocal lattice.

– Type: string

standard primitive structure

– Description: AFLOW standard primitive crystal

structure representation.

– Type: structure object

standard conventional structure

– Description: AFLOW standard conventional crystal

structure representation.

– Type: structure object

wyccar

– Description: ITC conventional crystal structure

representation.

– Type: structure object

– Similar to:

Spglib: Spg standardize cell ðto primitive¼0Þ.

FINDSYM: after Space Group line.

The structure object lists the following information

regarding the crystal structure:

title

– Description: geometry file title.

– Type: string

scale

– Description: scaling factor of lattice vectors.

– Type: float

lattice

– Description: row-space representation of lattice vectors

(a; b; c).

– Type: 3 � 3 array floats

species

– Description: list of atomic species in crystal.

– Type: array of strings

number each type

– Description: number of atoms for each distinct atomic

species.

– Type: array of ints

coordinates type

– Description: indicates the coordinate representation

(‘Cartesian’ or ‘direct’).

– Type: string

atoms

– Description: atom information.

– Type: array of atom objects

where the atom object contains

name

– Description: atomic species name.

– Type: string

occupancy

– Description: site occupancy.

– Type: float

position

– Description: Cartesian or fractional coordinate.

– Type: 3 � 1 array

sgdata output. The output from this function is a subset of

edata containing the space-group and Wyckoff-position

information.
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