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Abstract

Magnetic materials have underpinned human civilization for at least one mil-
lennium and now find applications in the most diverse technologies, ranging
from data storage, to energy production and delivery, to sensing. Such great
diversity, associated to the fact that only a limited number of elements can sustain
a magnetic order, makes magnetism rare and fascinating. The discovery of a new
high-performance magnet is often a complex process, where serendipity plays an

S. Sanvito (�) · M. Žic · J. Nelson · T. Archer
School of Physics and CRANN Institute, Trinity College, Dublin, Ireland
e-mail: sanvitos@tcd.ie; zicm@tcd.ie; archert@tcd.ie

C. Oses · S. Curtarolo
Center for Materials Genomics, Duke University, Durham, NC, USA
Departments of Mechanical Engineering and Materials Science, Physics, and Chemistry, Duke
University, Durham, NC, USA
e-mail: stefano@duke.edu

© Springer International Publishing AG, part of Springer Nature 2018
W. Andreoni, S. Yip (eds.), Handbook of Materials Modeling,
https://doi.org/10.1007/978-3-319-50257-1_108-1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-50257-1_108-1&domain=pdf
mailto:sanvitos@tcd.ie
mailto:zicm@tcd.ie
mailto:archert@tcd.ie
mailto:stefano@duke.edu
https://doi.org/10.1007/978-3-319-50257-1_108-1


2 S. Sanvito et al.

important role. Here we present a range of novel approaches to the discovery and
design of new magnetic materials, which is rooted in high-throughput electronic
structure theory and machine learning models. Such combination of methods has
already demonstrated the ability of discovering ferromagnets with high Curie
temperature at an unprecedented speed.

1 Why New Magnets?

Magnetism is one of the most fascinating macroscopic orders of matter, and it is
deeply rooted in quantum mechanics. The Hund’s coupling is responsible for the
formation of local magnetic moments, m, often localized close to the atomic nuclei,
while the exchange interaction, J , makes the moments interacting to each other. This
is the m-J paradigm that, together with spin-orbit interaction, generates a multitude
of magnetic orders and phenomena.

The formation of the magnetic moment in the solid state is a relatively rare event
among the elements of the periodic table. It is possible in 3d transition metals and
in 4f rare-earths, both with an open shell configuration. It is also found, although
more rarely, in some 4d ions. Light elements, presenting 2p valence orbitals, form
close shell compounds. Therefore, despite presenting large Hund’s coupling, they
can sustain a moment only in their radical form, and the possibility of long-range
magnetic order remains associated to extremely defective compounds, and it is
surrounded by skepticism and debate (Magda et al. 2014). Finally, for heavier
elements the valence shell is too delocalized, and m does not form (Janak 1977),
with the exception of some low-dimensional structures (Moruzzi and Marcus 1989;
Requist et al. 2016).

Once the moments are formed, there are many possible mechanisms to couple
them to each other, depending on the details of any given material and in particular
on its position with respect to the metal/insulator boundary (Coey 2009). Magnetic
moments in metals usually couple by mean of interactions mediated by itinerant
electrons, such as the RKKY or the double-exchange ones. These lead to a
ferromagnetic order. At the same time, there are mechanisms, such as magnetic
super-exchange, which are mostly active in the insulating regime and may produce
an antiferromagnetic order. Such rules, however, are not general and the actual
magnetic coupling is very sensitive to details. The local chemical environment, the
crystal structure, the density of magnetic ions, etc. all may play a critical role so
that it is not uncommon to find also ferromagnetic insulators (Wohlfarth 1980) and
antiferromagnetic metals (Wadley et al. 2013). In general, however, it is a fact that
magnetism is relatively rare in the materials world, with only about 4,000 inorganic
compounds among the 100,000 known to date (ICSD 2018) presenting a magnetic
order of some kind.

There are several good technological reasons to extend the available menu
of magnetic materials. Firstly, there is a growing number of applications that
rely on high-performing magnets for which the ideal compound is yet to be
discovered or needs to be “rediscovered.” Room-temperature applications, of any
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kind, require a magnetic ordering temperature in excess of 300◦C, a value that
ensures stable operation in the temperature range −50◦/+120◦C. Only about 400
magnets meet such criterion. Furthermore, specific applications dictate several
other conditions. For instance, permanent magnets should maximize the magneto-
crystalline anisotropy, K1, and the total magnetization, MS, so that energy product
is large. At the same time, they should be made of elements abundant in the earth
crust. In contrast, element criticality is less problematic for the magnets employed
by the data storage industry (e.g., Pt is used), but these need to be grown on
desired substrates; their grain structure needs to be highly optimized and so does
their magnetic hysteresis. Furthermore, changes in technology may generate novel
requirements. For instance, it is likely that the advent of heat-assisted magnetic
recording may add constrains on the thermal properties of the magnetic recording
media.

Sometimes the demand for a new magnet is not dictated by a new technological
need. For instance, Nd2Fe14B-based magnets currently cover about 90% of the
permanent magnets market, with the remaining share also being largely occupied
by rare-earth-containing compounds (e.g., Sm-Co alloys). The average price of
a kilogram of neodymium metal was US$8 in 2006, US$56 at the end of 2010,
US$450 in 2011, and then fell to US$125 in September 2012. Prize volatility is a
significant issue for all those applications requiring large volumes of raw elements
(an electric vehicle requires about 3 kg of Nd-Fe-B, a direct-drive wind generator
about 250 kg), where steady supply is key. Importantly, the rare-earth prize volatility
is not associated to fluctuations in the mining production but to commercial
strategies between producers and retailers. Such economical geopolitical constrain
is the main driver toward a worldwide effort in developing rare-earth-free permanent
magnets.

Finally, in addition of being rare and technologically important, magnetism is
complex and often defies our physical/chemical intuition. A good example is given
by SrTcO3 (Rodriguez et al. 2011). This is a distorted cubic perovskite displaying
a G-type antiferromagnetic order with the remarkably high Néel temperature of
TN = 750◦C. SrTcO3 is unusual from several points of view. Tc is the magnetic
element, one of the few displaying a local moment among the 4d transition metal
series and highly radioactive. The Néel temperature is exceptionally high with only a
handful antiferromagnets having TN above 500◦C. Finally, the chemical substitution
of Tc with elements in its neighborhood in the periodic table produces only low-
temperature antiferromagnets (SrCrO3, SrMnO3 and SrFeO3), one low-temperature
ferromagnet (SrRuO3), and a diamagnetic compound (SrMoO3). As such, the
strong antiferromagnetism of SrTcO3, which is due to a subtle interplay between
p-d hybridization and Jahn-Teller distortion (Franchini et al. 2011), appears as a
singularity in our magnetic materials landscape.

Given magnetism complexity, the variety of microscopic mechanisms at play, and
the subtle sensitivity to details, it is not surprising that the “traditional” trial and error
approach to the discovery/design of new magnets has a pretty low throughput. This
has been recently challenged by two completely new approaches to materials dis-
covery, namely, high-throughput electronic structure theory (HTEST) and machine
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learning (ML) methods. In this new framework, one aims at accelerating the
discovery process by performing an extremely large volume of ab initio calculations,
which are directed by astute ways for navigating large datasets and identifying
patterns among the data. Here we will review such new materials discovery strategy
with a particular emphasis on the problems and requirements associated with the
magnetic interaction. We will take the discovery of novel magnetic Heusler alloys
as prototype, since this is the materials class, where most of the work has focused to
date (Sanvito et al. 2017). A large part of the methodology described here is based
on the AFLOW project, which is discussed in detail in a chapter of volume 1 (Toher
et al. 2018).

2 The High-Throughput Approach to Materials Discovery

2.1 General Principles

In general there are three steps common to all the attempts at HTEST (Curtarolo
et al. 2013): (1) the creation of large dataset of computed materials properties, (2) the
organization of such calculations in easy-to-access databases, and (3) the screening
of the databases in the search of new materials with desired properties or of new
rules for designing novel compounds. Let us discuss these three steps in some detail.

Creating large datasets of computed materials properties imposes a number of
choices, which somehow determine the further capability of the entire scheme.
One strategy consists in producing highly standardized and curated data. Here one
decides the level of theory to use and no data are accepted unless they satisfy
some stringent criteria. A rather popular choice is that of using density functional
theory (DFT) in either the local density or the generalized gradient approximation
(LDA and GGA). These ensure enough accuracy, in particular in terms of total
energies and elementary linear-response properties, and most importantly the
possibility of a high throughput. The convergence parameters (cutoff energies, k-
point sampling, force tolerance, etc.) are also highly standardized, so that total
energies can be computed across different chemical compositions, structures, and
unit cell sizes. Almost all the most popular databases are produced in this way.
These include AFLOW.org (Curtarolo et al. 2012b), Materials Project (Jain et al.
2013), OQMD (Kirklin et al. 2015), and 2D (Rasmussen and Thygesen 2015).
A second strategy consists in accepting all possible data, regardless of the source
(the particular electronic structure theory code used) and the level of theory (e.g.,
different exchange correlation functionals). The convergence criteria are usually
monitored, but stringent tests making different computational platforms compatible
with each other are still under development. Typically the data are much more
difficult to compare, but the database volume can grow significantly larger than in
the case of highly curated data, since it benefits from a large user base. Examples of
this strategy are the Harvard Clean Energy (Hachmann et al. 2011) and the NoMaD
projects (Ghiringhelli et al. 2017).
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Common to all the strategies is the necessity to deal with large volumes of
calculations produced by several users, often with a rather diverse geographical
distribution, and the necessity to store the data in easy-to-access databases. This
requires efficient managers to run the calculations, check for convergence, create
the appropriate entries for the database, and analyze the data. Again one can adopt
different strategies for performing this task. On the one hand, there are examples
of a single software platform that performs all these tasks, as, for instance, the
AFLOW code (Curtarolo et al. 2012a). On the other hand, one can construct a suit
of tools (often written in python), which handle the different tasks, as, for instance,
the Aiida platform (Pizzi et al. 2016). The main advantage of the first strategy is the
efficiency and the high level of curation, while that of the second is the flexibility of
the platform. In both cases the databases are usually accessible through a graphical
web interface and a back end suitable for data processing.

Creating large datasets of computational data strictly speaking is not a necessity.
In principle one can replace those with experimental data and navigate them with
a variety of machine learning tools (see the second part of this chapter). However,
although the materials science community produces annually an enormous volume
of data, these are communicated via scientific publications in a rather narrative form.
As such the experimental data are extremely fragmented and difficult to harvest.
There is also a multitude of curated databases, but most of them are proprietary
and typically focused only on a limited number of properties (e.g., crystal structure,
thermochemistry, etc.). Crystallographic databases are probably the only exception,
and projects like ICSD (2018) and the crystallographic open database (Grazulis et al.
2009) currently enjoy a great popularity.

Finally, one needs to develop tools to navigate the databases. Here the central
role is played by the descriptors. A descriptor is an easy-to-calculate property that
defines a material. This can be a direct observable (e.g., the quasiparticle gap, the
bulk modulus, etc.) or a quantity that acts as a proxy for a given property, such
as the effective mass as a proxy for the mobility of a semiconductor. Descrip-
tors are constructed directly from the elementary electronic properties computed
with the chosen electronic structure theory. Their definition usually reflects the
understanding of a property from a given community. Examples of descriptors are
the high-throughput topological insulator robustness for the discovery topological
insulators (Yang et al. 2012), the GIBBS method for thermal conductivity (Toher
et al. 2014), the spectroscopic limited maximum efficiency of light-harvesting
materials (Yu and Zunger 2012), etc.

2.2 Constructing Magnetic Libraries: Heusler Compounds

In short the HTEST strategy to the discovery of new materials consists in generating
large libraries of hypothetical compounds and then in evaluating their properties,
including the likelihood of these compounds to be made. Again, the criteria
used to generate such initial libraries vary significantly depending on the targeted
properties. For instance, one can select a specific crystal structure and try all
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Fig. 1 Critical ordering temperature, either Curie or Néel, for known (a) ferromagnets and (b)
antiferromagnets as a function of the materials space group. Note that magnetic order seems to be
more favorable for high space group numbers, namely, for high-symmetry cubic crystals. This is
the region in the space group space where we find the magnets with the highest critical temperatures

possible chemical compositions compatible with that structure, sometimes imposing
additional constraints such as the total valence electron count (Yan et al. 2015).
Magnetic compounds are distributed over a broad range of space groups (see Fig. 1)
and, in addition to the limited number of magnetic ions, contain a large variety of
nonmagnetic elements. As such establishing a stringent criterion for generating a
library of magnetic prototypes is not straightforward. One possible criterion is to
look at classes of compounds where the incidence of magnetism is high, as, for
instance, in transition metals/rare-earth intermetallics (Dam et al. 2017).

Here we will describe a less selective criterion, namely, a library of Heusler
alloys (Sanvito et al. 2017), a prototypical family of ternary compounds populated
with several high-performance magnets (Graf et al. 2011). In their most common
form, Heusler alloys are cubic compounds consisting of four interpenetrating fcc
lattices. The so-called regular Heusler alloy, X2YZ (Cu2MnAl-type), crystallizes
in the Fm3̄m cubic space group (No. 225), with the X atoms occupying the 8c

Wyckoff position (1/4, 1/4, 1/4) and the Y and Z atoms being, respectively, at
4a (0, 0, 0) and 4b (1/2, 1/2, 1/2). The Y and Z elements form an octahedral-
coordinated rock-salt structure, while the X atoms occupy the tetrahedral voids
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Fig. 2 Possible Heusler alloys: (a) regular Heusler, (b) inverse Heusler, and (c) half Heusler. In
panel (d) we show the tetrahedral F 4̄3m cell used to construct the electronic structure database. (e)
Ternary convex hull diagram for Al-Mn-Ni. Note the presence of the stable HA, Ni2MnAl. (Figure
from Sanvito et al. 2017)

(see Fig. 2a). Alternatively, in the inverse Heusler structure, (XY )XZ (Hg2CuTi-
type), now X and Z form the rock-salt lattice, while the remaining X and Y atoms
fill the tetrahedral sites (Fig. 2b), so that one X atom presents sixfold octahedral
coordination, while the other has fourfold tetrahedral coordination. Finally, one can
also have the so-called half Heusler alloy, XYZ (MgCuSb-type). This is obtained
by removing one of the X atoms from the regular type, thus leaving a vacancy at one
of the tetrahedral sites (Fig. 2c). The Wyckoff positions are now 4a (0, 0, 0), 4b (1/2,
1/2, 1/2), and 4c (1/4, 1/4, 1/4), respectively, for X, Y , and Z. The minimal unit cell
describing all three types can be constructed as a tetrahedral F 4̄3m cell, containing
four (three for the case of the half Heusler) atoms (Fig. 2d). Such a cell allows for a
ferromagnetic spin configuration and for a limited number of antiferromagnetic and
ferrimagnetic ones.

Note that it is not uncommon for Heusler alloys to have a significant amount
of site-occupation disorder. In this case there is a special classification depending
on the particular sites where the disorder takes place, as illustrated in Table 1 for
the complete Heusler alloys and in Table 2 for the inverse ones. Modeling site-
occupation disorder is a notoriously challenging problem in ab initio studies due
to computational costs, although recent developments look promising for future
investigations (Yang et al. 2016). Finally, it is worth mentioning that there exist
a number of Heusler alloys presenting significant tetragonal distortion. These are
usually associated to Mn-containing compounds, in particular with the Mn2YZ

composition (Faleev et al. 2017), and they are interesting since they can potentially
display large magneto-crystalline anisotropy.
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Table 1 Site occupancy and general formula for different atomic orders of Heusler compounds.
The notations according to the Inorganic Crystal Structure Database (ICSD), the Strukturberichte
(SB), the Pearson database, as well the space group are given. (Table adapted from Graf et al. 2011)

Site occupancy Formula Type (ICSD) SB Pearson Space group

X,X′, Y, Z XX′YZ LiMgPdSn Y cF16 F 4̄3m (No. 216)

X = X′, Y, Z X2YZ Cu2MnAl L21 cF16 Fm3̄m (No. 225)

X,X′ = Y,Z XX′
2Z CuHg2Ti X cF16 F 4̄3m (No. 216)

X = X′ = Y,Z X3Z BiF3 DO3 cF16 Fm3̄m (No. 225)

X = X′, Y = Z X2Y2 CsCl B2 cP2 Pm3̄m (No. 221)

X = Y,X′ = Z X2X
′
2 NaTl B32a cF16 Fd 3̄m (No. 227)

X = X′ = Y = Z X4 W A2 cI2 Im3̄m (No. 229)

Table 2 Site occupancy and general formula for differently ordered half-Heusler compounds.
The notations according to the Inorganic Crystal Structure Database (ICSD), the Strukturberichte
(SB), the Pearson database, as well the space group are given. Wyckoff position 4d (3/4, 3/4, 3/4)
denotes the second tetrahedral lattice site, which is void in ordered materials. (Table adapted from
Graf et al. 2011)

Site occupancy Formula Type (ICSD) SB Pearson Space group

4a, 4b, 4c XYZ LiAlSi C1b cF16 F 4̄3m (No. 216)

4a = 4b, 4c XZ2 CaF2 C1 cF12 Fm3̄m (No. 225)

4a, 4b, 4c = 4d X2YZ Cu2MnAl L21 cF16 F 4̄3m (No. 216)

4a = 4b, 4c = 4d XY CsCl B2 cP2 Pm3̄m (No. 221)

4a = 4c, 4b = 4d YZ NaTl B32a cF16 Fd 3̄m (No. 227)

4a = 4b = 4c = 4d X W A2 cI2 Im3̄m (No. 229)

We have constructed a library of potential Heusler alloys by considering all
possible combinations of three elements chosen from the 3d, 4d, and 5d periods
and from the groups III, IV, V, and VI. These include Ag, Al, As, Au, B, Ba, Be,
Bi, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Ga, Ge, Hf, Hg, In, Ir, K, La, Li, Mg, Mn, Mo,
Na, Nb, Ni, Os, P, Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Se, Si, Sn, Sr, Ta, Tc, Te, Ti,
Tl, V, W, Y, Zn, and Zr. We have thus avoided rare-earth elements, since in the last
decade their price has been volatile on the market, so that the search for rare-earth-
free magnets has become a sought-after target. If one considers all the possible
stoichiometry compatible with the elements chosen and all the available crystal
structures (regular, inverse, and half Heusler), a total number of 236,115 prototypes
will be reached. Their electronic structure has been computed at the AFLOW
standard, namely, by DFT with the GGA parameterized by Perdew et al. (1996).
The DFT platform is VASP (Kresse and Furthmuller 1996), and the convergence
criteria is quite stringent, namely, the convergence tolerance is 1 meV/atom and
the typical Brillouin zone sampling is over a dense grid of 6,000–10,000 k-points
per reciprocal atom (Calderon et al. 2015). The structures are fully relaxed, and in
general the electronic structure is initialized in such a way to have the maximum
possible spin. This gives a unit-cell ferromagnetic initial configuration whenever
the unit cell contains more than one magnetic ion. The calculations are performed
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without spin-orbit interaction. More details about the computational method are
reported in Calderon et al. (2015).

2.3 The Descriptors

2.3.1 Energy-Related Descriptors
The very first property that one usually wishes to monitor in the HTEST protocol is
the likelihood that a particular compound can be grown. The appropriate descriptor
is then the Gibbs free energy, G = H −ST , where H is the enthalpy, S the entropy,
and T the temperature. If G can be calculated, then all thermodynamically stable
compounds can be identified, leaving out only those possible in the form of long-
living metastable phases. However, the calculation of the Gibbs free energy is too
demanding to be carried out in a high-throughput framework, so that in general one
chooses to evaluate quantities related only to the DFT total energy.

A very crude but yet selective criterion is given by the enthalpy of formation.
For the Heusler X2YZ one has to check that its enthalpy, HX2YZ , is lower than the
sum of the enthalpies of formation of its elementary constituents, namely, ΔH =
HX2YZ−(2HX+HY +HZ) < 0. For instance, for Ni2MnAl, a now well-established
magnetic shape memory alloy (Ziebeckt and Webster 1975), one has to check that
HNi2MnAl is lower than the sum of the enthalpies of formation of fcc Ni, Mn, and Al,
their energy-lowest structures. As a further approximation, the enthalpy of formation
is replaced by the DFT total energy.

A second, much more stringent, stability criterion is obtained by constructing
for every three elements the convex hull diagram of the associated ternary com-
pounds (Lukas et al. 2007), Descriptor 1. This essentially consists in establishing
whether the enthalpy of formation of X2YZ is lower than that of all the possible
binary and elementary decompositions, for instance, XY+XZ, X2Y+Z, XYZ+X,
etc. Again by taking the example of Ni2MnAl, we find that it is stable against
all possible decompositions along the Al-Mn-Ni convex hull diagram, which
is presented in Fig. 2e. The most stable structure is the regular Heusler with
a formation energy of −404 meV/atom, but there are also three unstable ones
with ΔH < 0, namely, Mn2NiAl (�H=−209, 121 meV/atom above tie-plane),
NiMnAl (�H=−39, 400 meV/atom above tie-plane), and Al2MnNi (�H=−379,
100 meV/atom above tie-plane). Such three unstable structure, all with �H < 0,
clearly prove that the enthalpy of formation alone says little about the stability of a
given compound. It is also worth to mention that even the convex hull, as calculated
so far, provides only an incomplete descriptor for the thermodynamical stability. In
fact, in principle one has also to check possible decompositions involving alternative
ternary compounds. Furthermore, once a ternary material is predicted stable, there
is still the possibility that the ground state crystal structure is not a Heusler type.
As such, once a stoichiometry has been predicted stable against decomposition, one
should perform further crystal structure prediction calculations. Possible methods
include random sampling (Pickard and Needs 2011), genetic algorithms (Oganov
and Glass 2006), or targeted sampling (d’Avezac et al. 2012).
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One has to consider that the probability of finding new ground states per alloy
reduces with increasing the number of species. This can be seen by performing a
phase stability experiment in the thermodynamic data available in the AFLOW.org
repository (Curtarolo et al. 2012b), which is performed by calculating all the
available binary, ternary, quaternary, etc. convex hulls (Lukas et al. 2007). The
enthalpies can then be analyzed, and the average gain in enthalpy with respect
to the number of species N , δH(N) ≡ H(N) → (N + 1), decreases with
N . This quantity competes against the disorder state, unavoidably promoted by
configurational entropy going as ≈log(N). If follows that, in our case ternary case,
the existence/absence of a ternary compound depends mostly on decomposition
in binaries than in competition by other ternaries. As such, a first-order stability
analysis, based on simply checking binaries, will be an appropriate approach
capable to weed out most of the uninteresting compositions.

Additional energy-related descriptors can be defined, depending on the properties
and materials class that one wants to investigate. In general, it is useful to have an
idea on how robust is the thermodynamical stability of a compounds. This can be
estimated by calculating the enthalpy of formation relative to that of the most stable
balanced decomposition. If such difference is around kBT at room temperature (kB
is the Boltzmann constant, kBTRT = 25 meV), then one usually defines the material
as robustly stable (Sanvito et al. 2017). This descriptor, Descriptor 2, is denoted as
�kT .

Finally, considering that Heusler alloys are often prone to site-occupation
misplacement, it is useful to define a descriptor, Descriptor 3, which identifies the
tendency to disorder. This is the entropic temperature (Curtarolo et al. 2013; Hart
et al. 2013; Yong et al. 2014), TS, which is defined for a binary XY alloy as

TS = max
i

[
�H(Xxi

Y1−xi
)

kB[xi log xi + (1 − xi) log(1 − xi)]
]

, (1)

where i counts all the stable compounds in the XY binary system. In prac-
tice TS measures the ability of an ordered phase to resist deterioration into a
temperature-driven, entropically promoted, disordered mixture. This is quantified by
the concentration-maximized formation enthalpy weighted by the inverse of its ideal
entropic contribution (random alloy). By convention we choose the sign of TS so
that a positive temperature is needed for competing against the compound stability
(TS < 0 if �H > 0), and one expects TS → 0 for a compound spontaneously
decomposing into a disordered mixture.

In Eq. (1), the curvature of the iso-max ideal-latent heat locus can be seen as a
descriptor of the (ideal) entropy that a system can absorb upon nucleation in a single
phase and internal reorganization containing ideal disorder. As such, it is a viable
descriptor to tackle the unavoidable entropy stabilization happening in half Heuslers
(entropy of vacancies) or in full Heuslers (entropy of species permutations). In these
systems, disorder might overcome enthalpy stabilization and lead to stable solid
solutions unobtainable with prediction algorithms mentioned above.
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2.3.2 Magnetic Descriptors
A magnet can be defined as “high-performing,” when it presents a range of
electronic and magnetic properties particularly suitable for a given application.
Thus, for instance, a high-performing permanent magnet will need to score high
against descriptors different from those of a magnet designed for magnetocaloric
applications (Coey 2009). Some magnetic descriptors are observables and can be
extracted directly from the DFT calculations. This is, for instance, the case of
the magnetic moment, m (Descriptor 4), which can be directly compared with
the experimental saturation magnetization. In the case the magnet is screened for
spintronics applications (for magneto-transport), it is important to assess its spin
polarization at the Fermi level. This is defined as (Descriptor 5)

P α
F = n

↑
F(v

↑
F )α − n

↓
F(v

↓
F )α

n
↑
F(v

↑
F )α + n

↓
F(v

↓
F )α

, (2)

where nσ
F and vσ

F are, respectively, the density of states (DOS) at the Fermi level and
the Fermi velocity for the spin-σ sub-band. In general, P α

F describes the degree of
spin polarization of the current that the material can sustain in different transport
conditions (Mazin 1999). Here P = 1 indicates that only one spin species is
responsible for the electron transport (Coey and Sanvito 2004). Note that different
values of α characterize different transport experiments. For instance, α = 0 is for
tunneling, α = 1 for ballistic transport, and α = 2 for diffusive. Note also that P α

F
is a direct observable only for α = 0 (e.g., with a spectroscopical measurement).

There are also magnetic descriptors, whose definition requires additional DFT
calculations, possibly combined with other theories. This is, for instance, the case
of the magneto-crystalline anisotropy (MCA – Descriptor 6), which measures the
ability of a magnet to maintain the magnetization direction fixed in space. The MCA
contributes to the hysteresis of a magnet, but it is difficult to isolate from other
contributions to the total anisotropy (e.g., shape anisotropy). Computing the MCA
is in general involved as it requires highly accurate total energy or perturbation
theory calculations including spin-orbit interaction (Bloński and Hafner 2009).

Finally, common to all magnets is the critical ordering temperature, TC (Curie or
Neél), Descriptor 7. This requires knowledge of the compound magnetic excitation
spectrum, namely, of the susceptibility, χ . There are several ways to determine such
quantity and all require significant additional work. One of such possibilities is
that of using time-dependent DFT (Savrasov 1998), which is capable of describing
both Stoner excitations and spin waves. In the case the excitation spectrum is
dominated by spin waves, a popular choice is that of performing a series of DFT
total energy calculations for different magnetic configurations and mapping these
onto a Heisenberg model of some kind. There are several different approaches to
perform both the mapping and the total energy calculations, including magnetic
force theorem (Oswald et al. 1985), spin spirals (Sandratskii 1986), and collinear
multi-configurations (Archer et al. 2011). Finally, usually TC is computed either by
using mean-field theory or with Monte Carlo simulations.
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2.4 Analysis

Out of the 236,115 prototypes contained in our Heusler alloys library, only 35,602
have a DFT energy lower than the sum of that of their elementary phases, namely,
they satisfy the condition �H < 0. These 35,602 include 6,778 compounds with
a magnetic ground state. Such an estimate can be slightly conservative. In fact we
are able to describe only those magnetic phases, where the magnetic cell is the
same as the primitive one. This clearly excludes many potential magnetic solutions,
in particular complex antiferromagnetic and ferrimagnetic phases, which are often
found in some of the magnetic Heuslers (Rode et al. 2013). Furthermore, we may
expect that the ferromagnetic DFT initialization may force final ferromagnetic
solutions to otherwise antiferromagnetic ground states, i.e., the DFT run may
converge to a local minimum. In any case 6,778 potentially new magnets is an
extraordinary large number, since only 4,000 magnets are known to date.

The application of Descriptor 1, however, reduces drastically such number.
Since the construction of the ternary convex hull diagrams requires a significantly
large number of calculations, we have initially limited our analysis to intermetallic
prototypes, namely, to Heusler structures made of 3d, 4d, and 5d elements only.
These are 36,540 in total, but only 248 are on the convex hull; hence only 248 are
predicted stable. Most importantly only 20 have a magnetic ground state, meaning
that the incidence of stable magnetism in our Heusler library has to be estimated
to be around 0.05%. A close look at the newly predicted magnetic Heusler alloys
reveals that, with the exception of Rh2FeZn, only three families are found, namely,
Co2YZ, Mn2YZ and X2MnZ.

The Co2YZ family is perhaps the most interesting; it contains already 25 known
compounds all lying on the Slater-Pauling curve (Graf et al. 2011) and houses
several half-metals. Our search found four new stable alloys, namely, Co2VZn,
Co2NbZn, Co2TaZn, and Co2MnTi. The first three have the low valence electron
count of 25, while for Co2MnTi this is large, 29. The numerical regression used
to evaluate TC correctly places these four on the Slater-Pauling curve, as shown in
Fig. 3, and predicts Co2MnTi to have the remarkable TC of 940 K. The other three
new compounds have all a TC around 200 K, but two of them become nonmagnetic
upon tetragonal distortion leaving only Co2VZn magnetic (predicted TC ∼ 228 K).

Five Mn2YZ compounds populate the second family, namely, Mn2PtRh,
Mn2PtCo, Mn2PtPd, Mn2PtV, and Mn2CoCr. In general Mn2YZ alloys are found
to crystallize in the regular Heusler structure if the atomic number of the Y ion is
smaller than that of Mn, Z(Y ) < Z(Mn), and the inverse one for Z(Y ) > Z(Mn).
This, however, is valid when one element from the main groups occupies the 4c

position. In our case of intermetallic Heuslers, we find that the regular Fm3̄m

structure is always the ground state, regardless of the chemical composition.
Furthermore, all the new compounds present some degree of antiferromagnetic
coupling, which results in either a zero-moment ground state when Mn is the only
magnetic ion, and in a ferrimagnetic configuration when other magnetic ions are
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Fig. 3 Slater-Pauling curve for magnetic Heusler alloys of the form Co2YZ. The magnetic
moment per formula unit, m, is plotted against the number of valence electron, NV, in the left panel,
while TC is displayed on the right. Red symbols correspond to predicted HAs while the black ones
to existing materials. For the sake of clarity, several compounds have been named collectively on
the picture. Co2AB 1 (Co2FeGa, Co2FeAl, Co2MnSi, Co2MnGe, Co2MnSn), Co2AB 2 (Co2TaAl,
Co2ZrAl, Co2HfGa, Co2HfAl, Co2TaGa), Co2AB 3 (Co2ZrAl, Co2HfAl, Co2HfGa, Co2TaGa).
(Figure from Sanvito et al. 2017)

present. No estimate of TC is possible in this case since there are no data for regular
Mn2YZ alloys to run the regression against.

Finally, we have found several X2MnZ compounds (13), most of them including
a 4d ion (Ru, Rh, and Pd) in the tetrahedral X position. In general, these compounds
have a magnetic moment per formula unit ranging between 4 and 5 μB, consistent
with the nominal 2+ valence of Mn in octahedral coordination. The regression, run
against 18 existing compounds of which 13 are with X=Ru, Rh, or Pd, establishes a
correlation between the Mn-Mn nearest neighbor distance, dMn−Mn, and TC. This
effectively reproduces the empirical Castelliz-Kanomata curves (Castelliz 1955;
Kanomata et al. 1987) and returns us the prediction that none of the X2MnZ alloys
will display a TC exceeding 500 K.

The final and ultimate validation of the high-throughput approach must come
from an experimental lab. With this in mind, we have attempted the growth
of four newly predicted alloys, namely, Co2MnTi, Mn2PtPd, Mn2PtCo, and
Mn2PtV. Co2MnTi is chosen because of its high Curie temperature, while among
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the Mn2-based alloys, we have selected two presenting a ferrimagnetic ground
state (Mn2PtCo and Mn2PtV) and one meeting the stringent robustness criterion
(Mn2PtPd). Details of the growth and magnetic characterization can be found in
Sanvito et al. (2017).

Two of the four Heusler alloys have been successfully synthesized, Co2MnTi
and Mn2PtPd, while the other two, Mn2PtCo and Mn2PtV, decompose into binary
compounds (notably in both cases, one of the products of the decomposition was an
intermetallic with a very large unit cell, and it was not included in our database).
Co2MnTi was found to crystallize in the regular Fm3̄m Heusler structure with a
lattice parameter, a = 5.89 Å in close agreement to the predicted one, a = 5.84 Å.
Most strikingly the TC extrapolated from the zero-field cooled magnetization curve
in a field of 1 T is found to be 938 K, essentially identical to that predicted by our
regression, 940 K. This is a remarkable result, since to our knowledge it is the
first time that a new high-temperature ferromagnet has been discovered by high-
throughput means.

Also Mn2PtPd was found to be a single phase without evidence of decomposi-
tion. X-ray diffraction reveals that the structure is that of a tetragonally distorted
regular Heusler (I4/mmm – TiAl3-type) with lattice parameters a = 4.03 Å and
c = 7.24 Å. Magnetization curves at room temperature and 4 K show no hysteresis
or spontaneous magnetization indicating that the compound is antiferromagnetic at
low temperature.

3 Machine Learning for Materials Discovery

The general concept underpinning machine learning methods for materials science
is relatively simple. One wishes to establish relations between known microscopic
features, including chemical and perhaps structural information, with a number
of physical/chemical properties. In practice the machine learning model, fML,
defined as

fML : 
v = ({Zi}, NV, . . .) → p, (3)

associates to a feature vector, 
v, the property p. Then, 
v contains information
such as the atomic numbers, {Zi}, of the elements in a compound; the number of
valence electrons, NV; etc. The machine learning models are purely numerical and
do not require any particular physical knowledge of the property under investigation.
There is a multitude of algorithms available, going from simple linear regression
to complex neural network schemes (Shalev-Shwartz and Ben-David 2014; Hastie
et al. 2013). These can deliver a classification, namely, they can sort materials in
classes or the continuous value of a given property (e.g., the Curie temperature of
a ferromagnet). The standard procedure in creating a machine learning model is to
train the model over a given subset of data, the training set, and then to evaluate the
quality of the learning by predicting the property of data never seen before, the test
set.
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There are a number of issues related to machine learning applied to materials
science, which are relatively general to any algorithm and property. The first
concerns the many possible ways to represent the feature vector, which should
satisfy a number of criteria. In particular the feature vector should be continuous for
small variations in the features, with two materials having the same representation
only if their target properties are identical. This criterion essentially establishes
a notion of similarity across the materials space. For instance, if one seeks at
describing a property that strongly depends on the number of valence electrons,
elements are represented by their group in the periodic table better then by their
atomic number. In fact, Si and Ge will have the same representation when using
the group (both in group IV), while they will appear as rather distant if the atomic
number is considered (14 for Si and 32 for Ge). The representation of the crystal
structure poses particular problems. The space group, for instance, is difficult to use,
since tiny distortions from a high-symmetry structure (high space group number)
may result in a space group with a rather low number. Furthermore, whatever
representation one chooses, it should be both translational and rotational invariant
and should be insensitive on the choice of the unit cell (for solids). Note that these
criteria associated to the feature vector are not stringent conditions in general. In
principle a solid machine learning model based on an extremely large number
of data should be able to establish patterns among the data even if the distance
between different feature vectors does not follow an intuitive physical/chemical
metric. Unfortunately the materials space is not large, so that using feature vectors
with the properties described above is highly desirable.

The second issue is related to the so-called curse of dimensionality, which
establishes that as the dimension of the feature space gets larger, the number
of possible distinct configurations increases exponentially. In other words the
density of points needed to extrapolate the data in a multidimensional space grows
exponentially with the dimension of the space itself. This essentially means that
in order to obtain the same quality of learning, the number of data needed grows
exponentially with the dimension of the feature vector, i.e., adding more information
to the feature vector may decrease the change to establish patterns in the data.
In materials science the curse of dimensionality is a serious issue for two main
reasons. Firstly, the chemical materials space is large but not huge. Secondly, the
availability of experimental data is limited by the fragmentation of the various
databases, and the fact that results are communicated in scientific publications,
which are little data oriented. This has two main consequences. Firstly, most of the
machine learning studies to date train on theoretical data (as the ones contained in
AFLOWLIB.org) (Isayev et al. 2017) and not experimental ones, though predictions
show to be consistent with the experimental results. Secondly, one has to design
machine learning algorithms, where the dimension of the feature vector remains
small (Ghiringhelli et al. 2015).

When applied to magnetism, the use of machine learning models remains very
limited. Here we will present two illustrative examples, looking, respectively, at
predicting the magnetic moment of Fe-containing Heusler alloys and at sorting
tetragonally distorted ones into hard and soft magnets. Other examples of machine
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Fig. 4 The local coordination of the atomic sites in a Heusler alloy. The neighbors of the central
Fe atom form two shells of different symmetry. Atoms belonging to the nearest neighbor shell,
shown in blue, coordinate the central atom tetrahedrally. The next nearest neighbor shell is made
out of six (green) atoms and has octahedral symmetry. (Figure adapted from Žic et al. 2017)

learning approaches to magnetism include the identification of novel magnetic
phases with enhanced magnetic anisotropy (Kusne et al. 2014), the discovery of
intermetallic compounds (Oliynyk and Mar 2018), and the prediction of the Curie
temperature of transition-metal rare-earth compounds (Dam et al. 2017).

3.1 Magnetic Moment Predictions

We will now present a machine learning strategy to predict the magnetic moment of
L21 Fe-containing Heusler alloys (Žic et al. 2017) of the X2FeZ type. In general the
magnetic moment of 3d transition metals is highly localized and can be described
as atomic-like. This may get modified by the surrounding ions, which should be
then included into the definition of a suitable feature vector. We represent the local
structure by constructing clusters centered around the Fe ions as illustrated in Fig. 4.
The center of the cluster is occupied by Fe, the first coordination shell is populated
by ions X with atomic number Z1, while the second nearest neighbors are ions Z of
atomic number Z2.

A feature vector can then be defined as the following:


v = ({Zi}, {r0i}, {Ni}, alat), (4)
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Fig. 5 Left panel – Magnetic moment of Fe, mFe (in μB), for a wide range of nearest neighbors
at a constant Wigner-Seitz volume (RWS = 2.7 bohr). The atomic number of the next nearest
neighbor, Z3, is color coded, while here we plot data as a function of the first nearest neighbor
atomic number, Z1. We can notice a linear increase of the magnetic moment across the transition
metal series which does not depend on Z3. The symbols are the DFT data, while the corresponding
machine learning trend is shown with the blue line. Right panel – a data sample containing a wider
range of main group elements. The data elucidates the origin of the oscillation in the machine
learning trend throughout the main group series. (Figure adapted from Žic et al. 2017)

where {Zi} are the atomic number of the ions in the cluster (i = 1, 2), {Ni} is their
valence, r0i is the distance between the central Fe ion and the i-th one, while alat is
the lattice constant of the relative Heusler compound.

We have then used such feature vector in a random forest regression algorithm
trained over a large number of Heusler alloys, whose electronic structure was
computed at the level of GGA-DFT (Žic et al. 2017). In fact, we have constructed a
number of machine learning models using feature vectors similar to that presented
here and capable of predicting the magnetic moment of an atom at the center of the
cluster of any type (not just Fe). After having noticed that the Fe magnetic moment
is little affected by the choice of Z2, as long as this crystal position is occupied by an
element belonging to one of the main groups, we have focused our attention on the
dependence of the Fe moment, mFe, over the Z1. In general we have discovered that
the valence of X determines mFe. In fact, if this is smaller than 8, then the moment
will decrease; otherwise it will increase. This trend is true for all the elements in the
3d and 4d periods, as shown in Fig. 5, so that the largest Fe moment is found when
X = Ni and Pd.
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3.2 Anisotropy Analysis: Saving Computational Time

As a second example of machine learning methods applied to magnetism, we
describe here the construction of a classification scheme to sort out hard from
soft magnets (Žic 2017). The magnetic hardness of a compound is determined, at
the microscopic level, by the magneto-crystalline anisotropy (Bloński and Hafner
2009). This is a well-defined quantity, which depends on the spin-orbit coupling
strength, the crystal structure, and the magnetic ion responsible for the magnetic
moment. In general it can be computed either by using perturbation theory or by
total energy differences. In both cases the calculation is delicate as it required an
extremely accurate evaluation of the Fermi surface. In fact, the anisotropy is very
sensitive to the occupation of the various d orbitals so that one needs to determine
the position of the Fermi energy at a high degree of accuracy. As a result sampling
the k-points over a very fine mesh is mandatory, and the calculations end up to be
quite time-consuming. Clearly, if one can construct a machine learning strategy to
the calculation of the magneto-crystalline anisotropy, the high-throughput analysis
of magnetic materials will become more feasible.

Our dataset was constructed from a Heusler alloys library, from which we have
selected about 300 compounds presenting a magnetization exceeding 0.5 μB/fu and
tetragonal distortion c/a �= 1. In this case the thermodynamical stability was not
considered so that the dataset includes both stable and unstable structures. The
magnetic anisotropy was then calculated at the level of DFT-GGA using magnetic
force theorem. These initial calculations have returned us magneto-crystalline
anisotropy values ranging between 0 and 15 MJm−3, although for most of the
compounds, the anisotropy is smaller than 8 MJm−3.

We have then constructed a machine learning model based on a ridge classi-
fier (Pedregosa et al. 2011) and different choices of feature vector. In particular the
best model uses the following vector:


v = ({Zi}, {Ni}, {ζi}, {Mi}, V ), (5)

where Zi , Ni , and Mi are the atomic number, the number of valence electron, and the
local magnetic moment of the different species in X2YZ, respectively. In addition
V is the unit cell volume and ζi is a quantity associated to the spin-orbit coupling
strength (Dunn 1961). Importantly, the magnetic moments are estimated using a
generalization of the machine learning model described in the previous section (the
central atom does no longer need to be Fe) (Žic et al. 2017), so that the feature
vector does not comprise any quantities computed ab initio. We have then set the
magneto-crystalline anisotropy value of 0.8 MJm−3 as the boundary between hard
and soft magnets. This choice ensures that the population of hard and soft magnets
in our dataset is identical.

Although hard magnets are our target, we have decided to train the machine
learning model so to identify the soft ones. The reason behind such decision
is primarily related to the fact that hard magnets are scarce and the cost of
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Fig. 6 Receiver operating
curve (ROC) for the two hard
magnet classifiers discussed
in the text (left). The area
under the curve (auc) is
indicated in the brackets. The
machine learning model
described in the text is clf 2,
while clf 1 represents a
second model with a different
choice of feature vector. The
dashed red line is for a
random classifier

1

0.8

0.6

0.4

0.2

10.8

random (0.5)

ideal point
(0,1)

T
ru

e 
P

o
si

ti
ve

 R
at

e

False Positive Rate

Classifier (auc)

clf. #1 (0.75)

clf. #2 (0.78)

0.60.40.2
0

0

unintentionally dismissing a viable candidate is high. This means that a very
selective machine learning model will be able to predict reliably hard magnets
but will likely discharge many of them. We therefore choose a strategy where we
maximize the number of correctly identified soft magnets, namely, the true positive
rate (TPR), under the constraint that no hard magnet is mistaken for a soft magnet,
i.e., we aim to keep the false positive rate (FPR) as small as possible. This will select
the soft compounds and discharge both soft and hard.

In Fig. 6 we present the receiver operating curve (ROC) for the machine learning
model described in the text (clf 2), for a second one constructed with a different
feature vector (clf 1) and for a random classifier (dashed red line). One can move
along the ROC by changing the decision value cutoff. Ideally one wishes the model
to be at the top left corner of the ROC, namely, to have a true positive rate of 100%
(all compounds with the desired property are selected) and a false positive rate of
0 (no compounds are misclassified). In a realistic machine learning model, this is
not possible and one has to take a compromise. In our case the best solution is that
of having a false positive rate of 0 and a true positive rate of around 60%. When
applied to soft magnets, this means that 60% of the soft magnets will be found
without an error, meaning that 30% of the total compounds in the dataset will be
correctly classified as soft (we consider a sample where the soft/hard ratio is 1).
For those one will not need to perform any further calculation. Clearly such result
becomes important if the dataset is very extended. Let us imagine, for the sake of
the argument, that one wishes to compute the magneto-crystalline anisotropy for all
the 236,000 Heusler alloys contained in the AFLOWLIB.org database. Our machine
learning scheme will then save about 79,000 calculations.
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4 Conclusion

In this chapter we have described how high-throughput electronic structure theory
and machine learning strategies can accelerate the discovery and the design of new
magnets. This indeed is an area of magnetism, which is still in its infancy, but
that has already demonstrated a strong potential. At a first look, it appears that the
efficiency of the approach is not high and the most skeptical reader may argue that
a more conventional trial and error approach can be more fruitful. This is true only
in part. There are, in fact, a few key points to be noted.

Firstly, one has to expect that as the databases grow, the need for further
calculations will be reduced. The mapping of the Heusler alloys thermodynamical
stability has certainly been a challenging computational undertaking. However, we
were able to conduct a first rapid screening of the intermetallic subset simply
because the data for binary compounds were already in the AFLOWLIB.org
database. It is particularly important to remark that many of these data were
generated for research projects completely different from the one described here,
meaning that data sharing is a unique asset of any high-throughput initiative.

The opposite argument is also valid, namely, our data have been useful not only to
discover new magnets but also for screening materials according to other properties.
For instance, the half Heusler library was investigated in the search of compounds
presenting low thermal conductivity (Carrete et al. 2014). This concept of “recycling
data” is indeed an important one, and certainly the success of the method needs to
be evaluated over the entire range of discoveries that a dataset enables.

Finally, even data that do not contribute to a direct discovery (materials that
are not thermodynamically stable) still can be used to construct machine learning
algorithms to rapidly navigate the data themselves. Most importantly such machine
learning models will help us in directing further calculations, so to improve the
discovery throughput and identify gaps and opportunities in the materials space.
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